Câu hỏi:

25/04/2022 514

Cho đa giác lồi \({A_1}{A_2}...{A_{20}}.\) Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mỗi cách chọn ngẫu nhiên 3 đỉnh từ các đỉnh của đa giác sẽ tạo ra một tam giác và số tam giác là \(n\left( \Omega \right) = C_{20}^3.\)

Gọi \(A\) là biến cố 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho.

Ta có mỗi tam giác thuộc \(\Omega \) thì có một trong 4 trường hợp sau:

TH1: Cả 3 cạnh của tam giác là các cạnh của đa giác, trường hợp này không có tam giác nào.

TH2: Chỉ có 2 cạnh của tam giác là cạnh của đa giác, khi đó đỉnh chung của 2 cạnh này sẽ là đỉnh của đa giác ban đầu, trường hợp này có 20 tam giác.

TH3: Chỉ có 1 cạnh của tam giác là cạnh của đa giác khi đó ứng với mỗi cạnh bất ký của đa giác thì sẽ có 16 tam giác thỏa mãn, vậy trường hợp này sẽ có 20x16 = 320 tam giác.

TH4: Không có cạnh nào của tam giác là cạnh của đa giác, khi đó tất cả các cạnh của tam giác đều là các đường chéo của đa giác.

Từ đây ta có \(n\left( A \right) = n\left( \Omega \right) - 20 - 320 = 800\) tam giác.

Vậy xác suất để chọn được 3 đỉnh tạo thành tam giác không có cạnh nào của đa giác đã cho là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{40}}{{57}}.\)

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi \(\left( S \right)\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S.\)

Xem đáp án » 25/04/2022 3,334

Câu 2:

Cho số tự nhiên \(n\) thỏa mãn \(C_n^0 + C_n^1 + C_n^2 = 11.\) Số hạng chứa \({x^7}\) trong khai triển \({\left( {{x^3} - \frac{1}{{{x^2}}}} \right)^n}\) bằng

Xem đáp án » 25/04/2022 2,317

Câu 3:

Bạn An gửi tiết kiệm một số tiền ban đầu là 1000000 đồng với lãi suất 0,58% / tháng (không kỳ hạn). Hỏi bạn An phải gửi ít nhất bao nhiêu tháng thì được cả vốn lẫn lãi bằng hoặc vượt quá 1300000 đồng?

Xem đáp án » 25/04/2022 2,224

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Gọi \(S\) là tập hợp các giá trị nguyên \(m \in \left[ { - 2021;2021} \right]\) để hàm số \(g\left( x \right) = f\left( {x + m} \right)\) nghịch biến trên khoảng \(\left( {1;2} \right).\) Hỏi \(S\) có bao nhiêu phần tử?

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Gọi \(S\) là tập hợp các giá trị nguyên \(m \in \le (ảnh 1)

Xem đáp án » 25/04/2022 2,167

Câu 5:

Đạo hàm của hàm số \(y = \frac{{\ln \left( {{x^2} + 1} \right)}}{x}\) tại điểm \(x = 1\) là \(y'\left( 1 \right) = a\ln 2 + b,\left( {a,b \in \mathbb{Z}} \right).\) Tính \(a - b.\) 

Xem đáp án » 25/04/2022 1,657

Câu 6:

Cho hình chóp tam giác đều \(S.ABC\) có cạnh bên bằng \(2a,\) góc giữa cạnh bên và mặt đáy bằng \({60^0}.\) Tính thể tích của khối nón có đỉnh là \(S\) và đáy là đường tròn ngoại tiếp \(\Delta ABC.\) 

Xem đáp án » 25/04/2022 1,476

Câu 7:

Có bao nhiêu giá trị nguyên của tham số \(m\) trong \(\left[ { - 2020;2020} \right]\) để phương trình \(\log \left( {mx} \right) = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?

Xem đáp án » 25/04/2022 1,208

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store