Câu hỏi:

25/04/2022 813

Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) để đường thẳng \(y = m\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2}\) tại 3 điểm phân biệt \(A,B,C\) \((B\) nằm giữa \(A\) và \(C)\) sao cho \(AB = 2BC.\) Tính tổng các phần tử thuộc \(S.\) 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình hoành độ giao điểm của đường thẳng \(y = m\) và đồ thị hàm số \(y = {x^3} - 3{x^2}\) là \({x^3} - 3{x^2} - m = 0\left( * \right).\)

Gọi \({x_1},{x_2},{x_3}\left( {{x_1} < {x_2} < {x_3}} \right)\) lần lượt là 3 nghiệm của (*), theo giả thiết ta giả sử \(A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right),C\left( {{x_3};{y_3}} \right)\) khi đó

\(AB = 2BC \Leftrightarrow \left| {{x_2} - {x_1}} \right| = 2\left| {{x_3} - {x_2}} \right|\)

\( \Leftrightarrow {x_2} - {x_1} = 2\left( {{x_3} - {x_2}} \right)\)

x13x2+2x3=0

\( \Leftrightarrow {x_1} + {x_2} + {x_3} = 4{x_2} - {x_3} \Leftrightarrow {x_3} = 4{x_2} - 3\) (theo ĐL Vi-et cho PT(*) có \({x_1} + {x_2} + {x_3} = 3).\)

Thay nghiệm \({x_3} = 4{x_2} - 3\) vào (*) ta có phương trình \({\left( {4{x_2} - 3} \right)^3} - 3{\left( {4{x_2} - 3} \right)^2} = m\)

Lại có \({x_2}\) cũng là nghiệm của \(\left( * \right)\) nên \(x_2^3 - 3x_2^2 = m\) do đó ta có phương trình

\({\left( {4{x_2} - 3} \right)^3} - 3{\left( {4{x_2} - 3} \right)^2} = x_2^3 - 3x_2^2\)

\( \Leftrightarrow 64x_2^3 - 144x_2^2 + 108x_2^{} - 27 - 3\left( {16x_2^2 - 24{x_2} + 9} \right) = x_2^3 - 3x_2^2\)

\( \Leftrightarrow 63x_2^3 - 189x_2^3 + 180{x_2} - 54 = 0\)

\( \Leftrightarrow 7x_2^3 - 21x_2^3 + 20{x_2} - 6 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}{x_2} = \frac{{7 + \sqrt 7 }}{7}\\{x_2} = 1\\{x_2} = \frac{{7 - \sqrt 7 }}{7}\end{array} \right.\)

Với \({x_2} = 1\) suy ra \({x_3} = 1\) (loại).

Với \({x_2} = \frac{{7 \pm \sqrt 7 }}{7} \Rightarrow m = - \frac{{48 \pm 20\sqrt 7 }}{{49}}.\)

Thử lại trực tiếp ta thấy \(m = - \frac{{98 + 20\sqrt 7 }}{{49}}\) và \(m = - \frac{{98 - 20\sqrt 7 }}{{49}}\) là thỏa mãn được yêu cầu bài toán.

Vậy \(S = \left\{ { - \frac{{98 - 20\sqrt 7 }}{{49}}; - \frac{{98 + 20\sqrt 7 }}{{49}}} \right\}\) và tổng các phần tử thuộc tập \(S\) là \( - 4.\)

Đáp án A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi \(\left( S \right)\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S.\)

Xem đáp án » 25/04/2022 3,853

Câu 2:

Bạn An gửi tiết kiệm một số tiền ban đầu là 1000000 đồng với lãi suất 0,58% / tháng (không kỳ hạn). Hỏi bạn An phải gửi ít nhất bao nhiêu tháng thì được cả vốn lẫn lãi bằng hoặc vượt quá 1300000 đồng?

Xem đáp án » 25/04/2022 3,340

Câu 3:

Cho số tự nhiên \(n\) thỏa mãn \(C_n^0 + C_n^1 + C_n^2 = 11.\) Số hạng chứa \({x^7}\) trong khai triển \({\left( {{x^3} - \frac{1}{{{x^2}}}} \right)^n}\) bằng

Xem đáp án » 25/04/2022 3,139

Câu 4:

Đạo hàm của hàm số \(y = \frac{{\ln \left( {{x^2} + 1} \right)}}{x}\) tại điểm \(x = 1\) là \(y'\left( 1 \right) = a\ln 2 + b,\left( {a,b \in \mathbb{Z}} \right).\) Tính \(a - b.\) 

Xem đáp án » 25/04/2022 2,636

Câu 5:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Gọi \(S\) là tập hợp các giá trị nguyên \(m \in \left[ { - 2021;2021} \right]\) để hàm số \(g\left( x \right) = f\left( {x + m} \right)\) nghịch biến trên khoảng \(\left( {1;2} \right).\) Hỏi \(S\) có bao nhiêu phần tử?

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Gọi \(S\) là tập hợp các giá trị nguyên \(m \in \le (ảnh 1)

Xem đáp án » 25/04/2022 2,476

Câu 6:

Cho hình chóp \(S.ABC\) có cạnh \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right),\) biết \(AB = AC = a,BC = a\sqrt 3 .\) Tính góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right).\)

Xem đáp án » 25/04/2022 2,337

Câu 7:

Tìm tập hợp tất cả các giá trị của tham số \(m\) để hàm số \(y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} - 2x + 3m} \right)} }}\) có tập xác định là R.

Xem đáp án » 25/04/2022 1,896
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay