Câu hỏi:
25/04/2022 1,168Cho hình chóp \(S.ABC\) có \(AB = AC = 4,BC = 2,SA = 4\sqrt 3 ;\angle SAB = \angle SAC = {30^0}.\) Gọi \({G_1},{G_2},{G_3}\) lần lượt là trọng tâm của các tam giác \(\Delta SBC;\Delta SCA;\Delta SAB\) và \(T\) đối xứng \(S\) qua mặt phẳng \(\left( {ABC} \right).\) Thể tích của khối chóp \(T.{G_1}{G_2}{G_3}\) bằng \(\frac{a}{b}\) với \(a,b \in \mathbb{N}\) và \(\frac{a}{b}\) tối giản. Tính giá trị \(P = 2a - b.\)
Quảng cáo
Trả lời:
Xét hai tam giác: \(\Delta SAC;\Delta SAB\) có:
\(SA\) chung.
\(AB = AC;\angle SAB = \angle SAC = {30^0} \Rightarrow \Delta SAB = \Delta SAC \Rightarrow SB = SC.\)
Suy ra tam giác \(\Delta SBC;\Delta ABC\) cân.
Gọi \(I\) là trung điểm của \(BC\) ta có \(\left\{ \begin{array}{l}BC \bot SI\\BC \bot AI\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow \left( {SAI} \right) \bot \left( {ABC} \right)\)
Gọi \(H\) là hình chiếu vuông góc của \(S\) trên \(AI \Rightarrow SH \bot \left( {ABC} \right)\)
Xét tam giác \(\Delta SAB\) ta có:
\(S{B^2} = S{A^2} + A{B^2} - 2SA.2B.\cos \angle SAB = 48 + 16 - 2.4\sqrt 3 .4.\cos {30^0} = 16 \Rightarrow SB = SC = 4\)
Suy ra \(\Delta SBC = \Delta ABC\left( {c.c.c} \right) \Rightarrow AI = SI = \sqrt {A{B^2} - B{I^2}} = \sqrt {16 - 1} = \sqrt {15} \)
Tam giác \(\Delta SIA\) cân tại \(I\). Gọi \(J\) là trung điểm của \(SA\) ta có: \(IJ = \sqrt {A{I^2} - J{A^2}} = \sqrt {15 - 12} = \sqrt 3 \)
Ta lại có \({S_{\Delta SIA}} = \frac{1}{2}IJ.SA = \frac{1}{2}SH.AI \Rightarrow SH = \frac{{IJ.SA}}{{AI}} = \frac{{\sqrt 3 .4\sqrt 3 }}{{\sqrt {15} }} = \frac{{12}}{{\sqrt {15} }}\)
Ta có: \({S_{\Delta ABC}} = \frac{1}{2}AI.BC = \sqrt {15} \Rightarrow {V_{S.ABC}} = \frac{1}{3}SH.{S_{\Delta ABC}} = \frac{1}{3}.\frac{{12}}{{\sqrt {15} }}.\sqrt {15} = 4.\)
Xét hình chóp \(T.{G_1}{G_2}{G_3}\) có:
\({V_{T.{G_1}{G_2}{G_3}}} = \frac{1}{3}TK.{S_{\Delta {G_1}{G_2}{G_3}}} = \frac{1}{3}.\frac{4}{3}SH.{\left( {\frac{2}{3}} \right)^2}.{S_{\Delta IMN}} = \frac{1}{3}.\frac{4}{3}SH.{\left( {\frac{2}{3}} \right)^2}\frac{1}{4}{S_{\Delta ABC}} = \frac{4}{{27}}{V_{S.ABC}} = \frac{{16}}{{27}}\)
Suy ra \(a = 16;b = 27 \Rightarrow P = 2a - b = 5.\)
Đáp án B
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(g\left( x \right) = 3{x^4} - 8{x^3} - 6{x^2} + 24x - m.\) Ta có số điểm cực trị của hàm số
\(y = \left| {3{x^4} - 8{x^3} + 24x - m} \right|\) bằng \(a + b.\) Với là số điểm cực trị của hàm \(g\left( x \right)\) và \(b\) là số nghiệm đơn (bội lẻ) của phương trình \(g\left( x \right) = 0.\)
Xét hàm số ta có
\(g'\left( x \right) = 12{x^3} - 24{x^2} - 12x + 24 = 12\left( {x + 1} \right)\left( {x - 2} \right)\left( {x - 1} \right)\) suy ra hàm số \(g\left( x \right)\) có 3 điểm cực trị.
Xét phương trình
\(g\left( x \right) = 0 \Leftrightarrow g\left( x \right) = 3{x^4} - 8{x^3} - 6{x^2} + 24x - m = 0 \Leftrightarrow 3{x^4} - 8{x^3} - 6{x^2} + 24x = m.\) Đồ thị hàm số \(y = \left| {g\left( x \right)} \right|\) có 7 điểm cực trị khi phương trình \(g\left( x \right) = 0\) có đúng 4 nghiệm phân biệt tương đương với hai đồ thị hàm số \(y = 3{x^4} - 8{x^3} - 6{x^2} + 24x\) và \(y = m\) có 4 giao điểm phân biệt.
Mà \(m \in \mathbb{Z}\) nên \(m \in \left\{ {9,10,11,12} \right\}.\) Vậy tổng các giá trị của tham số \(m\) là
\(S = 9 + 10 + 11 + 12 = 42.\)
Đáp án A
Lời giải
Gọi \({A_0}\) là số tiền ban đầu bạn An mang đi gửi tiếp kiệm, \(r\) là lãi suất đem gửi, \(x\) là số tháng bạn An cần gửi tiết kiệm để thu được cả vốn lẫn lãi bằng hoặc vượt quá 1300000 đồng.
Vì bạn An gửi tiết kiệm không thời hạn nên số tiền gốc và lãi thu được của tháng này sẽ là tiền gốc hay chính là số tiền đem gửi tiết kiệm của tháng sau.
Vậy sau 1 tháng bạn An thu được cả gốc và lãi là \({A_0} + {A_0}.r = {A_0}{\left( {1 + r} \right)^3}.\)
Sau 2 tháng bạn An thu được số tiền cả gốc và lãi là \({A_0}\left( {1 + r} \right) + {A_0}\left( {1 + r} \right).r = {A_0}{\left( {1 + r} \right)^2}.\)
Sau \(x\) tháng bạn An thu được số tiền cả gốc và lãi là \({A_0}{\left( {1 + r} \right)^x}.\)
Vậy ta có
\(1300000 \le 1000000{\left( {1 + 0,0058} \right)^x} \Leftrightarrow x \ge {\log _{1,0058}}1,3 \approx 45,366.\)
Vậy bạn An phải gửi ít nhất là 46 tháng thì thu được cả vốn và lãi bằng hoặc vượt quá 1300000 đồng.
Đáp án A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải