Câu hỏi:
29/12/2019 3,400Xét một hình trụ nội tiếp trong hình nón như hình bên, trong đó S là đỉnh hình nón, O là tâm đường tròn mặt đáy. Các đoạn AB, CD lần lượt là đường kính của đường tròn đáy của hình nón và hình trụ. Biết AC, BD cắt nhau tại điểm M (MSO) tỉ số thể tích của hình trụ và hình nón là . Tính tỉ số
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Chọn C.
Gọi I là trung điểm DC
Theo giả thiết ta có
Suy ra
Đã bán 244
Đã bán 104
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Khoảng cách từ điểm A đến mặt phẳng bằng (A'BD)
Câu 2:
Cho tứ diện ABCD có thể tích bằng 12 và G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp A.GBC
Câu 3:
Cho tứ diện ABCD trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho BC = 3BM, BD = BN, AC = 2AP. Mặt phẳng (MNP) chia khối tứ diện thành hai phần có thể tích là và . Tỷ số có giá trị bằng
Câu 4:
Hình nón có góc ở đỉnh bằng và chiều cao bằng Độ dài đường sinh của hình nón bằng
Câu 5:
Tứ diện OABC có OA, OB, OC đôi một vuông góc và OA =1, OB =2, OC =3. Tan của góc giữa đường thẳng OA và mặt phẳng (ABC) bằng
Câu 6:
Hình hộp đứng đáy là hình thoi có bao nhiêu mặt phẳng đối xứng ?
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M và N lần lượt là trung điểm của BC và CD (tham khảo hình vẽ bên). Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.CMN
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
100 câu trắc nghiệm Đạo hàm cơ bản (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận