Câu hỏi:
12/07/2024 1,439Câu hỏi trong đề: Bài tập Hàm số và đồ thị có đáp án !!
Quảng cáo
Trả lời:
Hàm số y = 6x2 có nghĩa với mọi x.
Xét hai số bất kì x1, x2 ∈ (– ∞; 0) sao cho x1 < x2.
Ta có x1 < x2 < 0 nên hay f(x1) > f(x2).
Vậy hàm số nghịch biến trên khoảng (– ∞; 0).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: 3,75 triệu đồng = 3 750 000 đồng; 2,5 triệu đồng = 2 500 000 đồng.
Gọi x (km) là tổng đoạn đường cần di chuyển của lớp.
Theo bài ra ta có: 550 ≤ x ≤ 600.
Giả sử y (đồng) là số tiền phải trả để thuê xe.
Khi đó đối với từng xe của mỗi công ty, ứng với mỗi giá trị của x có đúng một giá trị của y nên y là hàm số của x.
Đối với công ty A, ta có số tiền cần trả được biểu diễn theo hàm số:
yA = 3 750 000 + 5000x
Đối với công ty B, ta có số tiền cần trả được biểu diễn theo hàm số:
yB = 2 500 000 + 7500x
Ta cần so sánh yA và yB với điều kiện của x là 550 ≤ x ≤ 600 để chọn ra công ty có chi phí thấp nhất.
Ta có: yA = 3 750 000 + 5000x = (2 500 000 + 5000x) + 1 250 000
yB = 2 500 000 + 7500x = (2 500 000 + 5000x) + 2500x
Do 550 ≤ x ≤ 600 ⇔ 550 . 2500 ≤ 2500x ≤ 600 . 2500
⇔ 1 375 000 ≤ 2500x ≤ 1 500 000
Mà 1 250 000 < 1 375 000
Do đó (2 500 000 + 5000x) + 1 250 000 < (2 500 000 + 5000x) + 2500x
Hay yA < yB với 550 ≤ x ≤ 600.
Vậy để chi phí là thấp nhất thì lớp đó nên chọn xe của công ty A.
Lời giải
a) Ta có: y = – 2x2.
Với x = – 1 thì y = (– 2) . (– 1)2 = – 2.
Với x = 0 thì y = (– 2) . 02 = 0 ≠ 1.
Với x = 2 021 thì y = (– 2) . 20212 ≠ 1.
Vậy trong các điểm đã cho có điểm (– 1; – 2) và (0; 0) thuộc đồ thị hàm số y = – 2x2.
b) Điểm có hoành độ bằng – 2 hay x = – 2 thì tung độ y = (– 2) . (– 2)2 = – 8.
Điểm có hoành độ bằng 3 hay x = 3 thì tung độ y = (– 2) . 32 = – 18.
Điểm có hoành độ bằng 10 hay x = 10 thì tung độ y = (– 2) . 102 = – 200.
Vậy các điểm cần tìm có tọa độ là (– 2; – 8), (3; – 18) và (10; – 200).
c) Điểm có tung độ bằng – 18 hay y = – 18.
Khi đó: – 2x2 = – 18 ⇔ x2 = 9 ⇔ x = ± 3.
Vậy các điểm thuộc đồ thị hàm số có tung độ bằng – 18 là (3; – 18) và (– 3; – 18).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.