Câu hỏi:

14/01/2020 23,950 Lưu

Trong trò chơi “Chiếc nón kì diệu” chiếc kim của bánh xe có thể dừng lại ở một trong 7 vị trí với khả năng như nhau. Tính xác suất để trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp: Tính số phần tử của không gian mẫu và số phần tử của biến cố, sau đó suy ra xác suất.

Cách giải: Ba lần quay, mỗi lần chiếc kim có 7 khả năng dừng lại, do đó nΩ = 73 = 243 

Gọi A là biến cố: “trong ba lần quay, chiếc kim của bánh xe đó lần lượt dừng lại ở ba vị trí khác nhau" Khi đó ta có:

Lần quay thứ nhất, chiếc kim có 7 khả năng dừng lại.

Lần quay thứ hai, chiếc kim có 6 khả năng dừng lại.

Lần quay thứ ba, chiếc kim có 5 khả năng dừng lại.

Do đó nA = 7.6.5 = 210

Vậy 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Do A và B là 2 biến cố độc lập với nhau nên P(A.B) = P(A).P(B) = 0,12

Lời giải

Đáp án là B.

• Kí hiệu số ghế là 1;2;3;4;5;6.

• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại

Ta có: 3!.3!.2! = 72

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP