Câu hỏi:

22/05/2022 62

Cho khối lăng trụ ABC.A'B'C'. Đường thẳng đi qua trọng tâm của tam giác ABC và song song với BC cắt các cạnh AB, AC lần lượt tại M, N. Mặt phẳng (A'MN) chia khối lăng trụ thành hai phần. Tỉ số thể tích (phần bé chia phần lớn) của chúng bằng

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi G là trọng tâm của tam giác ABC. Gọi E là trung điểm của BCAGAE=23 .

Đường thẳng d đi qua G và song song BC, cắt các cạnh AB, AC lần lượt tại M, N.

.AMAB=ANAC=AGAE=23AM=23ABAN=23ACSΔAMN=49SΔABC       (1)

Ta có  VABC.A'B'C'=SΔABC.AA' .      (2)

Từ (1) và (2), suy ra VA'.AMN=427VABC.A'B'C'VBMNCA'B'C'=2327VABC.A'B'C' .

Khi đó tỉ số:VA'.AMNVBMNC.A'B'C'=4272327=423 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho mặt cầu S:x12+y22+z22=9 và hai điểm M4;4;2,N6;0;6 . Gọi E là điểm thuộc mặt cầu(S)  sao cho EM+EN đạt giá trị lớn nhất. Phương trình tiếp diện của mặt cầu (S) tại E

Xem đáp án » 22/05/2022 180

Câu 2:

Miền phẳng trong hình vẽ giới hạn bởi y=f(x) và parabol y=x22x . Biết 121fxdx=34 . Khi đó diện tích hình phẳng được tô trong hình vẽ bằng

Miền phẳng trong hình vẽ giới hạn bởi  y=f(x) và  (ảnh 1)

Xem đáp án » 22/05/2022 77

Câu 3:

Cho F(x) là một nguyên hàm của f(x) trên [0;1]  , biết F1=2  11x+1Fxdx=1 . Giá trị tích phân S=11x+12fxdx  là:

Xem đáp án » 22/05/2022 50

Câu 4:

Cho x, y, z là các số thực không âm thỏa mãn 0<x+y2+y+z2+z+x218 . Biết giá trị lớn nhất của biểu thức P=4x3+4y3+4z31108x+y+z4  ab , với a, b là các số nguyên dương và ab  tối giản. Tính S=2a+3b .

Xem đáp án » 22/05/2022 42

Câu 5:

Hàm số y=log73x+1  có tập xác định là:

Xem đáp án » 22/05/2022 38

Câu 6:

Cho hai số thực dương x, y thỏa mãn 4x2+32y+1=y+2x . Giá trị nhỏ nhất của biểu thức  

Xem đáp án » 22/05/2022 38

Bình luận


Bình luận