Câu hỏi:

22/05/2022 162

Đề kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là nΩ=410 .

Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”.

+) Trường hợp 1: Thí sinh đó làm được 8 câu (tức là 8,0 điểm): Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách chọn đáp án sai nên cóC108.32  cách để thí sinh đúng 8 câu.

+) Trường hợp 2: Thí sinh đó làm được 9 câu (tức là 9,0 điểm): Chọn 9 câu trong số 10 câu hỏi và câu còn lại có 3 cách lựa chọn đáp án sai nên có  cách để thí sinh đúng 9 câu.

+) Trường hợp 3: Thí sinh đó làm được 10 câu (tức là 10,0 đ

+) Trường hợp 1: Thí sinh đó làm được 8 câu (tức là 8,0 điểm): Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách chọn đáp án sai nên có  cách để thí sinh đúng 8 câu.

+) Trường hợp 2: Thí sinh đó làm được 9 câu (tức là 9,0 điểm): Chọn 9 câu trong số 10 câu hỏi và câu còn lại có 3 cách lựa chọn đáp án sai nên có C109.31  cách để thí sinh đúng 9 câu.

+) Trường hợp 3: Thí sinh đó làm được 10 câu (tức là 10,0 đ)

Chí có 1 cách duy nhất.

Suy ra số kết quả thuận lợi cho biến cố X là nX=C108.32+C109.31+1=436  .

Vậy xác suất cần tìm là P=nXnΩ=436410 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết số phức z thỏa mãn z11  zz¯  có phần ảo không âm. Phần mặt phẳng biểu diễn số phức z có diện tích là

Xem đáp án » 22/05/2022 1,313

Câu 2:

Trong không gian Oxyz, cho mặt cầu S:x12+y22+z22=9 và hai điểm M4;4;2,N6;0;6 . Gọi E là điểm thuộc mặt cầu(S)  sao cho EM+EN đạt giá trị lớn nhất. Phương trình tiếp diện của mặt cầu (S) tại E

Xem đáp án » 22/05/2022 1,291

Câu 3:

Cho đồ thị C:y=fx=x . Gọi (H) là hình phẳng giới hạn bởi đồ thị (C), đường thẳng x=9 và trục Ox. Cho điểm M thuộc đồ thị (C) và điểm A(9;0). Gọi V1  là thể tích khối tròn xoay khi cho (H) quay quanh trục Ox, V2  là thể tích khối tròn xoay khi cho tam giác AOM quay quanh trục Ox. Biết rằng V1=2V2 . Tính diện tích S phần hình phẳng giới hạn bởi đồ thị (C) và đường thẳng OM.

Cho đồ thị (C): y=f9x)= căn x . Gọi   là hình phẳng giới hạn  (ảnh 1)

Xem đáp án » 22/05/2022 804

Câu 4:

Cho x, y, z là các số thực không âm thỏa mãn 0<x+y2+y+z2+z+x218 . Biết giá trị lớn nhất của biểu thức P=4x3+4y3+4z31108x+y+z4  ab , với a, b là các số nguyên dương và ab  tối giản. Tính S=2a+3b .

Xem đáp án » 22/05/2022 694

Câu 5:

Cho hai số thực dương x, y thỏa mãn 4x2+32y+1=y+2x . Giá trị nhỏ nhất của biểu thức  

Xem đáp án » 22/05/2022 558

Câu 6:

Cho F(x) là một nguyên hàm của f(x) trên [0;1]  , biết F1=2  11x+1Fxdx=1 . Giá trị tích phân S=11x+12fxdx  là:

Xem đáp án » 22/05/2022 467

Câu 7:

Miền phẳng trong hình vẽ giới hạn bởi y=f(x) và parabol y=x22x . Biết 121fxdx=34 . Khi đó diện tích hình phẳng được tô trong hình vẽ bằng

Miền phẳng trong hình vẽ giới hạn bởi  y=f(x) và  (ảnh 1)

Xem đáp án » 22/05/2022 449

Bình luận


Bình luận