Câu hỏi:

26/05/2022 1,101

Cho hàm số y=f(x) xác định trên R, có đồ thị của hàm số f'(x) và đường thẳng y=-x như hình bên. Hàm số hx=fx33+x3322  đồng biến trên:

Cho hàm số y=f(x) xác định trên R, có đồ thị của hàm số f'(x) và đường thẳng y=-x như hình bên. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Đặt gx=fx+x22g'x=f'x+x>0f'x>xx>2 .

Khi đó hx=gx33=fx33+x3322h'x=gx33'=3x2.g'x33

Suy ra h'x>0g'x33>0x33>2x3>1x>1 .

Do đó hàm số hx  đồng biến trên khoảng1;+ .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Xét y=x3+x5 , ta có y'=3x2+1>0,x  hàm số đồng biến trên .

Lời giải

Đáp án C

Ta có 4m3+m2f2x+5=f2x+34m3+m=f2(x)+32f2x+5

8m3+2m=2f2x+62f2x+5

2m3=2f2x+52f2x+5+f2x+5

 (*)

Xét hàm số gt=t3+t  g't=3t2+1>0;tgt  là hàm số đồng biến trên .

Phương trình (*) suy ra g2m=g2f2x+52f2x+5=2m

m>02f2x+5=4m2m>0f2x=4m252m>52fx=4m252 1fx=4m252 2

(vì fx=0  chỉ có hai nghiệm phân biệt nên m>52 ).

+ Vì 4m252<0  nên từ đồ thị hàm số ta thấy phương trình fx=4m252  có một nghiệm duy nhất.

Từ yêu cầu bài toán suy ra phương trình fx=4m252  có hai nghiệm phân biệt.

+ Vì 4m252>0  nên từ đồ thị hàm số

4m252=44m25=32m=372 thoa manm=372 loai .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP