Câu hỏi:

27/05/2022 506

Cho hàm số h=2V3  liên tục và có đạo hàm trên R, có đồ thị như hình vẽ. Với m là tham số bất kỳ thuộc 0;1 . Phương trình fx33x2=3m+41mcó bao nhiêu nghiệm thực
Cho hàm số h=2 căn bậc 3 của V  liên tục và có đạo hàm trên R , có đồ thị như hình vẽ. Với m là tham số bất kỳ thuộc [0;1] . Phương trình f(x^3-3x^2)=3 căn m+4 căn (1-m)  có bao nhiêu nghiệm thực (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Đặt k=3m+41m3k5 .

Đặt tx=x33x2 , có t'x=3x26x;x=0x=0  hoặc x=2.

Bảng biến thiên như hình bên.

Cho hàm số h=2 căn bậc 3 của V  liên tục và có đạo hàm trên R , có đồ thị như hình vẽ. Với m là tham số bất kỳ thuộc [0;1] . Phương trình f(x^3-3x^2)=3 căn m+4 căn (1-m)  có bao nhiêu nghiệm thực (ảnh 2)

Phương trình trở thành ft=k  với k3;5

do thit=a>0BBT1 nghiem xt=b4<b<0BBT3 nghiem xt=c<4BBT1 nghiem x

Vậy phương trình đã cho có 5 nghiệm x.  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Xét y=x3+x5 , ta có y'=3x2+1>0,x  hàm số đồng biến trên .

Lời giải

Đáp án C

Ta có 4m3+m2f2x+5=f2x+34m3+m=f2(x)+32f2x+5

8m3+2m=2f2x+62f2x+5

2m3=2f2x+52f2x+5+f2x+5

 (*)

Xét hàm số gt=t3+t  g't=3t2+1>0;tgt  là hàm số đồng biến trên .

Phương trình (*) suy ra g2m=g2f2x+52f2x+5=2m

m>02f2x+5=4m2m>0f2x=4m252m>52fx=4m252 1fx=4m252 2

(vì fx=0  chỉ có hai nghiệm phân biệt nên m>52 ).

+ Vì 4m252<0  nên từ đồ thị hàm số ta thấy phương trình fx=4m252  có một nghiệm duy nhất.

Từ yêu cầu bài toán suy ra phương trình fx=4m252  có hai nghiệm phân biệt.

+ Vì 4m252>0  nên từ đồ thị hàm số

4m252=44m25=32m=372 thoa manm=372 loai .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP