Câu hỏi:

07/06/2022 125

Một hình nón có đỉnh S, đáy là đường tròn  tâm O, bán kính R bằng với đường cao của hình nón. Tỉ số thể tích của hình nón và hình cầu ngoại tiếp hình nón bằng:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Vì hình nón có bán kính R và chiều cao h bằng nhau nên  và thể tích hình nón đã cho là  Vn=13πR2h=13πR2.R=13πR3

Cắt hình nón bởi mặt phẳng đi qua trục ta được thiết diện là tam giác cân SAB  nên SH=h=R=HB=BA2  vuông tại S. Khi đó H là tâm đường tròn ngoại tiếp tam giác SABH cũng là tâm mặt cầu ngoại tiếp hình nón đỉnh S.

Nên bán kính mặt cầu là HS=R  nên thể tích hình cầu này là  Vc=43πR3.

Suy ra  VnVc=13πR343πR3=14.

Một hình nón có đỉnh S, đáy là đường tròn   tâm O, bán kính R bằng với đường cao của hình nón. Tỉ số thể tích của hình nón và hình cầu ngoại tiếp hình nón bằng: (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị của hàm số y=f(x) như hình vẽ bên. Khi đó giá trị của biểu thức 04f'(x2)dx+02f'(x+2)dx  bằng bao nhiêu?

Cho hàm số y=f(x)  có đạo hàm liên tục trên R. Đồ thị của hàm số y=f(x)  như hình vẽ bên. Khi đó giá trị của biểu thức tích phân từ 0 đến 4 của f'(x-2)dx+ tích phân từ 0 đến 2 của f'(x+2)dx  bằng bao nhiêu? (ảnh 1)

Xem đáp án » 07/06/2022 11,526

Câu 2:

Tất cả các giá trị thực của tham số m sao cho hàm số y=x4+(2m3)x2+m   nghịch biến trên khoảng (1;2)  (;pq),  trong đó phân số pq  tối giản và q>0 Hỏi tổng q+p là:

Xem đáp án » 10/06/2022 7,513

Câu 3:

Trong không gian Oxyz, cho hai đường thẳng d:x12=y+21=z43  d':{x=1+ty=tz=2+3t  cắt nhau. Phương trình mặt phẳng chứa d và d' 

Xem đáp án » 07/06/2022 4,179

Câu 4:

Cho hàm số y=f(x) liên tục trên R và có đồ thị hàm y=f'(x) như hình vẽ
Cho hàm số y=f(x)  liên tục trên  R và có đồ thị hàm  y=f'(x) như hình vẽ (ảnh 1)

Tìm m để bất phương trình f(x+1)13x3+xm>0  có nghiệm trên  [0;2].  

Xem đáp án » 10/06/2022 3,571

Câu 5:

Tìm các giá trị của tham số m để đồ thị hàm số y=x42m2x2+m4+1  có ba điểm cực trị. Đồng thời ba điểm cực trị đó cùng với gốc O tạo thành một tứ giác nội tiếp.

Xem đáp án » 07/06/2022 2,731

Câu 6:

Cho hàm số y=f(x)=2x+mx1.  Tính tổng các giá trị của tham số m để |max[2;3]f(x)min[2;3]f(x)|=2.   

Xem đáp án » 10/06/2022 2,018

Câu 7:

Cho phương trình z2mz+2m1=0  trong đó m là tham số phức. Giá trị của m để phương trình có hai nghiệm z1,z2  thỏa mãn z12+z22=10  là:

Xem đáp án » 07/06/2022 1,448

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store