Câu hỏi:

07/06/2022 770

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ:x+12=y3=z+11   và hai điểm A(1;2;1),B(3;1;5).  Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ.  sao cho khoảng cách từ B đến đường thẳng d là lớn nhất. Khi đó, gọi  là giao điểm của d với đường thẳng Δ.  Giá trị P=a+b+c  bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Gọi M=dΔ  thì  M(1+2t;3t;1t)

Khi đó  AM=(2+2t;3t2;t),BA=(2;3;4),BM=(4+2t;3t+1;4t)

[BM;BA]=(15t8;6t+8;12t10) 

d(B,d)=|[BM,BA]||AM|=(15t8)2+(6t+8)2+(12t10)2(2t2)2+(3t2)2+t2 

 =(15t8)2+(6t+8)2+(12t10)2(2t2)2+(3t2)2+t2=405t2576t+22814t220t+8

Xét hàm số f(t)=405t2576t+22814t220t+8  tìm GTLN được maxf(t)=29  tại  t=2.

Do đó M(3;6;3)  hay  a=3;b=6;c=3a+b+c=6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Mặt phẳng (P)  chứa d  nếu nó đi qua M=dd'  và nhận [ud,ud']  làm vectơ pháp tuyến.

 

d:x12=y+21=z43d:{x=12t'y=2+t'z=4+3t'

Gọi M là giao điểm của d , khi đó  {12t'=1+t2+t'=t4+3t'=2+3t{2t'+t=2t't=23t'+3t=6{t'=0t=2.

Suy ra  M(1;2;4).

Ta có:  ud=(2;1;3),ud'=(1;1;3)n=[ud;ud']=(6;9;1)

Mặt phẳng (P)  đi qua M(1;2;4)  và nhận n=(6;9;1)  làm vectơ pháp tuyến nên

 (P):6(x1)+9(y+2)+1(z4)=06x+9y+z+8=0.

Lời giải

Đáp án D

Ta có:  04f'(x2)dx+02f'(x+2)dx=04f'(x2)d(x2)+02f'(x+2)d(x+2)

 =f(x2)|04+f(x+2)|02

 =f(2)f(2)+f(4)f(2)=f(4)f(2)=4(2)=6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP