Câu hỏi:

10/06/2022 232

Cho hàm f(x) liên tục trên [0;1], biết 01[f2(x)+2ln2(2e)]dx=201[f(x)ln(x+1)]dx.  Tích phân I=01f(x)dx.    

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Sử dụng phương pháp tích phân từng phần ta tính được:

 01ln2(x+1)dx=2ln22e=012ln22edx.

Do đó giả thiết tương đương với:

 01[f(x)ln(x+1)]2dx=0f(x)=ln(x+1),x[0;1]

Suy ra   I=01f(x)dx=01ln(x+1)dx=ln4e.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho hai đường thẳng d:x12=y+21=z43  d':{x=1+ty=tz=2+3t  cắt nhau. Phương trình mặt phẳng chứa d và d' 

Xem đáp án » 07/06/2022 13,419

Câu 2:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị của hàm số y=f(x) như hình vẽ bên. Khi đó giá trị của biểu thức 04f'(x2)dx+02f'(x+2)dx  bằng bao nhiêu?

Cho hàm số y=f(x)  có đạo hàm liên tục trên R. Đồ thị của hàm số y=f(x)  như hình vẽ bên. Khi đó giá trị của biểu thức tích phân từ 0 đến 4 của f'(x-2)dx+ tích phân từ 0 đến 2 của f'(x+2)dx  bằng bao nhiêu? (ảnh 1)

Xem đáp án » 07/06/2022 12,507

Câu 3:

Tất cả các giá trị thực của tham số m sao cho hàm số y=x4+(2m3)x2+m   nghịch biến trên khoảng (1;2)  (;pq),  trong đó phân số pq  tối giản và q>0 Hỏi tổng q+p là:

Xem đáp án » 10/06/2022 7,997

Câu 4:

Cho hàm số y=f(x) liên tục trên R và có đồ thị hàm y=f'(x) như hình vẽ
Cho hàm số y=f(x)  liên tục trên  R và có đồ thị hàm  y=f'(x) như hình vẽ (ảnh 1)

Tìm m để bất phương trình f(x+1)13x3+xm>0  có nghiệm trên  [0;2].  

Xem đáp án » 10/06/2022 3,832

Câu 5:

Tìm các giá trị của tham số m để đồ thị hàm số y=x42m2x2+m4+1  có ba điểm cực trị. Đồng thời ba điểm cực trị đó cùng với gốc O tạo thành một tứ giác nội tiếp.

Xem đáp án » 07/06/2022 3,046

Câu 6:

Gọi A, B là hai điểm thuộc hai nhánh khác nhau trên đồ thị (C)  của hàm số y=x+3x3,  độ dài ngắn nhất của đoạn thẳng AB

Xem đáp án » 07/06/2022 2,908

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;1) Gọi (P) là mặt phẳng đi qua A và cách gốc tọa độ một khoảng lớn nhất. Khi đó, mặt phẳng (P) đi qua điểm nào sau đây?

Xem đáp án » 10/06/2022 2,701
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua