Câu hỏi:

11/06/2022 2,390

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số y=mx4(m5)x23  đồng biến trên khoảng (0;+). .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có: y'=4mx32(m5)x .

TH1:m=0y'=10x>0x>0 Hàm số đồng biến trên khoảng .

Do đó m=0  thỏa mãn.

TH2: m0

Hàm số đồng biến trên khoảng (0;+)  khi và chỉ khi y'0x(0;+) .

    4mx32(m5)x0,x(0;+)x[4mx22(m5)]0,x(0;+)4mx22(m5)0,x(0;+)g(x)=2mx2m+50,x(0;+)min[0;+)g(x)0

Xét hàm số g(x)=2mx2m+5  ta có g'(x)=4mx=0x=0 .

TH1: m>0

Bảng biến thiên:

Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số  y=mx^4-(m-5)x^2-3 đồng biến trên khoảng (0; dương vô cực) . (ảnh 1)

Từ bảng biến thiên g(0)0m+50m50<m5 .

TH2: m<0 Không tồn tại min[0;+)g(x) .

Vậy 0m5 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

 Δ đồng phẳng và không song song với Oz, suy ra ΔOz  .

Giả sử ΔOz=B(0;0;b)

AB=(2;1;b3) là 1 vectơ chỉ phương của .

 nP=(1;1;1)là 1 vectơ chỉ phương của .

DoΔ//(P)AB.nP=01+1b+3=0b=2 .

AB=(2;1;1){a=2b=1c=1ac=21=2.

Lời giải

Đáp án A

Cho hình chóp S.ABC có SA vuông góc với (ABC) , tam giác ABC đều AB=a ; góc giữa SB và mặt phẳng (ABC)  bằng 60 độ . Gọi M, N lần lượt là trung điểm của SA, SB. Tính thể tích khối chóp SMNC. (ảnh 1)

Ta có: SA(ABC)(SB,(ABC))^=(SB,AB)^=SBA^=60° .

Xét tam giác vuông SAB: SA=AB.tan60°=a3 .

VS.ABC=13.SA.SABC=13.a3.a234=a34.

Ta có: VSMNCVSABC=SMSA.SNSB=14VSMNC=a316.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP