Câu hỏi:
11/07/2024 1,352Cho hai parabol có phương trình y2 = 2px và y = ax2 + bx + c (a ≠ 0). Chứng minh rằng nếu hai parabol đó cắt nhau tại bốn điểm phân biệt thì bốn điểm đó cùng nằm trên đường tròn .
Câu hỏi trong đề: Bài tập Cuối chuyên đề 3 có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
+) Xét trường hợp a > 0.
Để hai parabol cắt nhau tại 4 điểm phân biệt thì đỉnh của parabol y = ax2 + bx + c phải nằm ở góc phần tư thứ IV (như hình vẽ).
Khi đó ta suy ra b < 0 và phương trình ax2 + bx + c có hai nghiệm phân biệt
Xét phương trình đường tròn
có
Vì b < 0 và (chứng minh trên) nên > 0 và
Do đó
Vậy (C) đúng là phương trình một đường tròn.
+) Trường hợp a < 0: Chứng minh tương tự ta được (C) đúng là phương trình một đưởng tròn.
+) Giờ ta chứng minh bốn giao điểm của hai parabol nằm trên đường tròn này. Thật vậy:
Nếu điểm M(x; y) là giao điểm của hai parabol trên thì ta có:
y2 = 2px và y = ax2 + bx + c y2 – 2px = 0 và ax2 + bx + c – y = 0
y2 – 2px = 0 và
Do đó M thuộc đường tròn (C). Vậy bốn giao điểm của parabol đều nằm trên (C).
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho elip có phương trình . Viết phương trình đường thẳng đi qua điểm M(2; 1) và cắt elip tại hai điểm A, B sao cho MA = MB.
Câu 2:
Một tàu vũ trụ nằm trong một quỹ đạo tròn và ở độ cao 148 km so với bề mặt Trái Đất (H.3.27). Sau khi đạt được vận tốc cần thiết để thoát khỏi lực hấp dẫn của Trái Đất, tàu vũ trụ sẽ đi theo quỹ đạo parabol với tâm Trái Đất là tiêu điểm; điểm khởi đầu của quỹ đạo này là đỉnh parabol quỹ đạo.
a) Viết phương trình chính tắc của parabol quỹ đạo (1 đơn vị đo trên mặt phẳng toạ độ ứng với 1 km trên thực tế, lấy bán kính Trái Đất là 6371 km ).
b) Giải thích vì sao, kể từ khi đi vào quỹ đạo parabol, càng ngày, tàu vũ trụ càng cách xa Trái Đất.
Câu 3:
Chứng minh rằng đồ thị của hàm số y = ax2 + bx + c (a ≠ 0) là một parabol có tiêu điểm là và đường chuẩn là , trong đó Δ = b2 – 4ac.
Câu 4:
Cho conic (S) có tâm sai e = 2, một tiêu điểm F(–2; 5) và đường chuẩn tương ứng với tiêu điểm đó là Δ: x + y – 1 = 0. Chứng minh rằng, điểm M(x; y) thuộc đường conic (S) khi và chỉ khi x2 + y2 + 4xy – 8x + 6y – 27 = 0 (được gọi là phương trình của (S), tuy vậy không phải là phương trình chính tắc). Hỏi (S) là đường gì trong ba đường conic?
Câu 5:
Viết phương trình đường conic có tâm sai , một tiêu điểm F(–1; 0) và đường chuẩn tương ứng là Δ: x + y + 1 = 0. Cho biết conic đó là đường gì?
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận