Câu hỏi:

12/07/2024 1,023

Xét đa thức p(n) = n2 – n + 41.

a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.

b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) p(1) = 41, p(2) = 43, p(3) = 47, p(4) = 53, p(5) = 61. Do đó p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố.

b) Từ việc p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố ta có thể đưa ra dự đoán p(n) là số nguyên tố với mọi n > 1. Tuy nhiên, khẳng định này là một khẳng định sai. Mặc dù khẳng định này đúng với n = 1, 2,..., 40, nhưng nó lại sai khi n= 41. Thật vậy, với n= 41 ta có p(41) = 412 là hợp số (vì nó chia hết cho 41).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên n ≥ 1.

a) 2 + 4 + 6 + ... + 2n = n(n + 1);

b) 12 + 22 + 32 +... + n2 = nn+12n+16.

Xem đáp án » 12/07/2024 11,077

Câu 2:

Chứng minh rằng nếu x > 1 thì (1 + x)n ≥ 1+ nx với mọi số tự nhiên n.

Xem đáp án » 12/07/2024 2,704

Câu 3:

Chứng minh rằng với mọi số tự nhiên n 2, ta có đằng thức:

an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1).

Xem đáp án » 12/07/2024 2,179

Câu 4:

Cho tổng Sn 11.2+12.3+...+1nn+1.

a) Tính S1, S2, S3.

b) Dự đoán công thức tính tồng Sn và chứng minh bằng quy nạp.

Xem đáp án » 12/07/2024 2,110

Câu 5:

Sừ dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥ 4) là nn32.

Xem đáp án » 12/07/2024 2,096

Câu 6:

Mỗi khẳng định sau là đủng hay sai? Nếu em nghĩ là nó đủng, hãy chứng minh nó. Nếu em nghĩ là nó sai, hãy đưa ra một phản ví dụ.

a) p(n) = n2 – n + 11 là số nguyên tố với mọi số tự nhiên n;

b) n2 > n với mọi số tự nhiên n ≥ 2.

Xem đáp án » 12/07/2024 1,670