Câu hỏi:

12/07/2024 1,705

Mỗi khẳng định sau là đủng hay sai? Nếu em nghĩ là nó đủng, hãy chứng minh nó. Nếu em nghĩ là nó sai, hãy đưa ra một phản ví dụ.

a) p(n) = n2 – n + 11 là số nguyên tố với mọi số tự nhiên n;

b) n2 > n với mọi số tự nhiên n ≥ 2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Khẳng định này là sai vì với n = 11 ta có p(11) = 112 không phải số nguyên tố.

b) Khẳng định này là đúng. Ta chứng minh bằng quy nạp:

Bước 1. Với n = 2 ta có 22 = 4 > 2.                                                          

Như vậy khẳng định đúng cho trường hợp n = 2.

Bước 2. Giả sử khẳng định đúng với n = k ( k ≥ 2), tức là ta có: k2 > k    

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (k + 1)2 > k + 1

Thật vậy, sử dụng giả thiết quy nạp ta có:

(k + 1)2 = k2 + 2k + 1 > k + 2k + 1 > k + 1.

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên n ≥ 1.

a) 2 + 4 + 6 + ... + 2n = n(n + 1);

b) 12 + 22 + 32 +... + n2 = nn+12n+16.

Xem đáp án » 12/07/2024 11,399

Câu 2:

Chứng minh rằng nếu x > 1 thì (1 + x)n ≥ 1+ nx với mọi số tự nhiên n.

Xem đáp án » 12/07/2024 2,831

Câu 3:

Cho tổng Sn 11.2+12.3+...+1nn+1.

a) Tính S1, S2, S3.

b) Dự đoán công thức tính tồng Sn và chứng minh bằng quy nạp.

Xem đáp án » 12/07/2024 2,240

Câu 4:

Chứng minh rằng với mọi số tự nhiên n 2, ta có đằng thức:

an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1).

Xem đáp án » 12/07/2024 2,236

Câu 5:

Sừ dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥ 4) là nn32.

Xem đáp án » 12/07/2024 2,224

Câu 6:

Xét đa thức p(n) = n2 – n + 41.

a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.

b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.

Xem đáp án » 12/07/2024 1,072
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua