Câu hỏi:

12/07/2024 2,288

Chứng minh rằng với mọi số tự nhiên n 2, ta có đằng thức:

an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1. Khi n = 1, ta có: a1 – b1 = a – b.

Vậy khẳng định đúng với n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:

ak – bk = (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1)

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:

ak + 1 – bk + 1 = (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1]

Thật vậy, sử dụng giả thiết quy nạp ta có:

ak + 1 – bk + 1

= a . ak – b . bk

= a . ak – a . bk + a . bk – b . bk

= a . (ak – bk) + bk . (a – b)

= a . (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + bk . (a – b)

= (a – b) . a . (ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + (a – b) . bk

= (a – b)(a . ak – 1 + a . ak – 2b + ... + a . abk – 2 + a . bk – 1) + (a – b) . bk

= (a – b)[a1 + (k – 1) + a1 + (k – 2)b + ... + a2bk – 2 + a . bk – 1) + (a – b) . bk

= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + a2b(k + 1) – 3 + ab(k + 1) –2] + (a – b) . b(k + 1) – 1

= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1].

Vậy khẳng định đúng với mọi số tự nhiên n 1.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 1 ta có 2.1 = 1(1 + 1).                                                    

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:                    

2 + 4 + 6 + ... + 2k = k(k + 1)                                                       

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:

2 + 4 + 6 + ... + 2k + 2(k+1) = (k + 1)[(k + 1) + 1]

Thật vậy, sử dụng giả thiết quy nạp ta có:

2 + 4 + 6 + ... + 2k + 2(k+1)

= k(k + 1) + 2(k+1) = (k + 1)(k + 2) = (k + 1)[(k + 1) + 1].

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

b) Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 1 ta có 12 = 11+12.1+16.                                          

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:                    

12 + 22 + 32 +... + k2 = kk+12k+16.                                       

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:

12 + 22 + 32 +... + k2 + (k + 1)2 = k+1k+1+12k+1+16.

Thật vậy, sử dụng giả thiết quy nạp ta có:

12 + 22 + 32 +... + k2 + (k + 1)2

= (k + 1)2  + kk+12k+16

=6k+126+kk+12k+16
=k+166k+1+k2k+1
=k+162k2+7k+6
=k+16k+22k+3
=k+16k+1+12k+1+1.

Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.

Lời giải

Ta chứng minh bằng quy nạp theo n.

Bước 1. Với n = 1 ta có (1 + x)1 = 1 + x = 1 + 1.x.                                  

Như vậy khẳng định đúng cho trường hợp n = 1.

Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: (1 + x)k ≥ 1+ kx.

Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: (1 + x)k + 1 ≥ 1+ (k + 1)x.

Thật vậy, sử dụng giả thiết quy nạp ta có:

(1 + x)k + 1

= (1 + x)(1 + x)k ≥ (1 + x)(1+ kx) = 1 + x + kx + kx2 > 1 + x + kx = 1+ (k + 1)x.

Vậy khẳng định đúng với mọi số tự nhiên n 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay