Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 1 = 12.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
Thật vậy, sử dụng giả thiết quy nạp ta có:
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên n ≥ 1.
a) 2 + 4 + 6 + ... + 2n = n(n + 1);
b) 12 + 22 + 32 +... + n2 =
Câu 2:
Chứng minh rằng nếu x > –1 thì (1 + x)n ≥ 1+ nx với mọi số tự nhiên n.
Câu 3:
Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có đằng thức:
an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1).
Câu 4:
Cho tổng Sn =
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tồng Sn và chứng minh bằng quy nạp.
Câu 5:
Sừ dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥ 4) là
Câu 6:
Mỗi khẳng định sau là đủng hay sai? Nếu em nghĩ là nó đủng, hãy chứng minh nó. Nếu em nghĩ là nó sai, hãy đưa ra một phản ví dụ.
a) p(n) = n2 – n + 11 là số nguyên tố với mọi số tự nhiên n;
b) n2 > n với mọi số tự nhiên n ≥ 2.
Câu 7:
Xét đa thức p(n) = n2 – n + 41.
a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.
b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.
về câu hỏi!