Câu hỏi:

12/07/2024 508

Tính chất của các số Cnk

a) Quan sát ba dòng đầu, hoàn thành tiếp hai dòng cuối theo mẫu:

(a + b)1 = a + b =C10a+C10b

(a + b)2 = a2 + 2ab + b2 =C20a2+C21ab+C20b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3 =C30a3+C31a2b+C32ab2+C30b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 = ...

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 = ...

Nhận xét rằng các hệ số khai triển của hai số hạng cách đều số hạng đầu và số hạng cuối luôn bằng nhau. Hãy so sánh, chẳng hạn, C41 C43, C52 C53. Từ đó hãy dự đoán hệ thức giữa Cnk Cnnk (0 ≤ k ≤ n).

b) Dựa vào kết quả của HĐ3a, ta có thể viết những hàng đầu của tam giác Pascal dưới dạng:

Media VietJack

(a + b)1

(a + b)2

(a + b)3

(a + b)4

(a + b)5

Từ tính chất của tam giác Pascal, hãy so sánh C10+C11 C21, C20+C21 C31,... Từ đó hãy dự đoán hệ thức giữa Cn1k1+Cn1k và Cnk.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4 = C40a4 + C41a3b + C42a2b2 + C43ab3 + C44b4.

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

= C50a5 + C51a4b + C52a3b2 + C53a2b3 + C54ab4 + C55b5.

Ta thấy C41 = C43, C52 = C53,...

Dự đoán: Cnk = Cnnk.

b) Ta thấy C10+C11 = C21, C20+C21 C31,...

Dự đoán: Cn1k1+Cn1k Cnk.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Áp dụng câu c) phần Vận dụng trang 36 ta có:

C2n0C2n1+C2n2C2n3+C2n4+C2n2n1+C2n2n=0

C2n0+C2n2+C2n4++C2n2n=C2n1+C2n3+C2n5++C2n2n1.

Mặt khác, áp dụng câu b) phần Vận dụng trang 36 ta có:

C2n0+C2n1+C2n2+C2n3+C2n4++C2n2n1+C2n2n=22n

C2n0+C2n2+C2n4++C2n2n

=C2n0+C2n1+C2n2+C2n3+C2n4++C2n2n1+C2n2n2

=22n2=22n12n1=2021n=1011.

Lời giải

Số hạng chứa x7 trong khai triển thành đa thức của (2 – 3x)10 hay (–3x + 2)10

 C101073x72107=C1033723x7=2099520x7.

Vậy hệ số của x7 trong khai triển thành đa thức của (2 – 3x)10 là –2099520.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Khai triển (x – 2y)6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay