Câu hỏi:

13/07/2024 12,967

Tìm phương trình của parabol (P): y = ax2 + bx + c (a ≠ 0), biết:

a) Parabol (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1 và đi qua điểm M(–1; 3);

b) Parabol (P) cắt trục tung tại điểm có tung độ y = –2 và hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1{0=a(2)2+b(2)+c0=a.12+b.1+c{4a2b+c=0   (1)a+b+c=0        (2).

(P) đi qua điểm M(–1; 3) =>  3 = a(–1)2 + b(–1) + c => a – b + c = 3 (3).

Từ (1), (2) và (3) ta có hệ phương trình: {4a2b+c=0a+b+c=0ab+c=3.

Giải hệ này ta được a = 32, b = 32, c = 3.

Vậy phương trình của (P) là y = 32x232x+3.

b) (P) cắt trục tung tại điểm có tung độ y = –2 => –2 = a . 02 + b . 0 + c hay c = –2 (1).

Hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2

{b2a=24=a.22+b.2+c{4a+b=0     (2)4a+2b+c=4   (3).

Từ (1), (2) và (3) ta có hệ phương trình: {c=24a+b=04a+2b+c=4.

Giải hệ này ta được a = 12, b = –2, c = –2.

Vậy phương trình của (P) là y = 12x2 – 2x – 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y, z, t lần lượt là bốn số nguyên dương thoả mãn cân bằng phương trình phản ứng hoá học:

xC2H6O + yO2 tozCO2 + tH2O.

Số nguyên tử C ở hai vế bằng nhau, ta có 2x = z (1).

Số nguyên từ H ở hai vế bằng nhau, ta có 6x = 2t hay 3x = t (2).

Số nguyên từ O ở hai vế bằng nhau, ta có x + 2y = 2z + t (3).

Thay (1) và (2) vào (3) ta được x + 2y = 2 . 2x + 3x hay y = 3x.

Vậy y = 3x, z = 2x, t = 3x.

Để phương trình có hệ số đơn giản, ta chọn x = 1, khi đó y = 3, z = 2, t = 3.

Vậy phương trình cân bằng phản ứng hoá học là C2H6O + 3O2to2CO2 + 3H2O.

Lời giải

Hướng dẫn giải

Gọi số tiền người thứ nhất, người thứ hai, người thứ ba đóng góp lần lượt là x, y,z (triệu đồng).

Theo đề bài ta có:

– Số tiền người đầu tiên đóng góp bằng một nửa tổng số tiền của những người còn lại, suy ra x = 12(y + z + 130) hay 2x – y – z = 130 (1).

– Người thứ hai đóng góp bằng 13 tổng số tiền của những người còn lại, suy ra y = 13(x + z + 130) hay –x + 3y – z = 130 (2).

– Người thứ ba đóng góp bằng 14 tổng số tiền của những người còn lại, suy ra z = 14(x + y + 130) hay –x – y + 4z = 130 (3).

Từ (1), (2) và (3) ta có hệ phương trình: {2xyz=130x+3yz=130xy+4z=130.

Giải hệ này ta được x = 200, y = 150, z = 120.

Suy ra tổng số tiền là: 200 + 150 + 120 + 130 = 600 (triệu đồng).

Vậy chiếc thuyền này được mua giá 600 triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP