Câu hỏi:

13/07/2024 14,576 Lưu

Tìm phương trình của parabol (P): y = ax2 + bx + c (a ≠ 0), biết:

a) Parabol (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1 và đi qua điểm M(–1; 3);

b) Parabol (P) cắt trục tung tại điểm có tung độ y = –2 và hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1{0=a(2)2+b(2)+c0=a.12+b.1+c{4a2b+c=0   (1)a+b+c=0        (2).

(P) đi qua điểm M(–1; 3) =>  3 = a(–1)2 + b(–1) + c => a – b + c = 3 (3).

Từ (1), (2) và (3) ta có hệ phương trình: {4a2b+c=0a+b+c=0ab+c=3.

Giải hệ này ta được a = 32, b = 32, c = 3.

Vậy phương trình của (P) là y = 32x232x+3.

b) (P) cắt trục tung tại điểm có tung độ y = –2 => –2 = a . 02 + b . 0 + c hay c = –2 (1).

Hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2

{b2a=24=a.22+b.2+c{4a+b=0     (2)4a+2b+c=4   (3).

Từ (1), (2) và (3) ta có hệ phương trình: {c=24a+b=04a+2b+c=4.

Giải hệ này ta được a = 12, b = –2, c = –2.

Vậy phương trình của (P) là y = 12x2 – 2x – 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y, z, t lần lượt là bốn số nguyên dương thoả mãn cân bằng phương trình phản ứng hoá học:

xC2H6O + yO2 tozCO2 + tH2O.

Số nguyên tử C ở hai vế bằng nhau, ta có 2x = z (1).

Số nguyên từ H ở hai vế bằng nhau, ta có 6x = 2t hay 3x = t (2).

Số nguyên từ O ở hai vế bằng nhau, ta có x + 2y = 2z + t (3).

Thay (1) và (2) vào (3) ta được x + 2y = 2 . 2x + 3x hay y = 3x.

Vậy y = 3x, z = 2x, t = 3x.

Để phương trình có hệ số đơn giản, ta chọn x = 1, khi đó y = 3, z = 2, t = 3.

Vậy phương trình cân bằng phản ứng hoá học là C2H6O + 3O2to2CO2 + 3H2O.

Lời giải

Hướng dẫn giải

Gọi số trâu đứng, trâu nằm, trâu già lần lượt là x, y, z (x, y, z là số nguyên dương).

Theo đề bài ta có hệ phương trình: {x+y+z=1005x+3y+13z=100 (*).

(*) {x+y=100z15x+9y=300z{x=300+4z3y=6007z3{x=4z3100y=2007z3.

Vìx > 0 nên 4z3100>0 z>75,

y > 0 nên 2007z3>0z<85.

Mà z là số nguyên dương nên z{76;77;...;84}.

Lại có x là số nguyên nên 4z3100 là số nguyên, suy ra z ⁝ 3 z{78;81;84}.

+) Với z = 78 thì x = 4, y = 18.

+) Với z = 81 thì x = 8, y = 11.

+) Với z = 84 thì x = 12, y = 4.

Vậy số trâu đứng, trâu nằm, trâu già theo thứ tự có thể là một trong ba bộ số (4; 18; 78), (8; 11; 81), (12; 4; 84).