Bài tập cuối chuyên đề 1 có đáp án
47 người thi tuần này 4.6 0.9 K lượt thi 12 câu hỏi
🔥 Đề thi HOT:
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
a) và b) là các hệ phương trình bậc nhất ba ẩn; bc không phải hê phương trình bậc nhất ba ẩn vì chứa yz.
+) Bộ ba số (–1; 0; 1) có là nghiệm của hệ a).
Vì khi thay bộ số này vào từng phương trình thì chúng đều có nghiệm đúng:
2 . (–1) – 0 + 1 = –1;
–(–1) + 2 . 0 = 1;
3 . 0 – 2 . 1 = –2.
+) Bộ ba số không là nghiệm của hệ a).
Vì khi thay bộ số này vào phương trình thứ nhất của hệ ta được đây là đẳng thức sai.
+) Bộ ba số (–1; 0; 1) không là nghiệm của hệ b).
Vì khi thay bộ số này vào phương trình thứ nhất của hệ ta được 4 . (–1) – 2 . 0 + 1 = 2, đây là đẳng thức sai.
+) Bộ ba số có là nghiệm của hệ b).
Vì khi thay bộ số này vào từng phương trình thì chúng đều có nghiệm đúng:
Lời giải
Hướng dẫn giải
a)
Vậy hệ phương trình đã cho có nghiệm duy nhất (0; –1; 1).
b)
Từ phương trình thứ hai ta có x = –2y + 5, thay vào phương trình thứ nhất ta được z = –2y + 3. Vậy hệ phương trình đã cho có vô số nghiệm dạng (–2y + 5; y; –2y + 3).
c)
Vì phương trình thứ ba của hệ vô nghiệm nên hệ đã cho vô nghiệm.
Lời giải
Hướng dẫn giải
a) (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1
(P) đi qua điểm M(–1; 3) => 3 = a(–1)2 + b(–1) + c => a – b + c = 3 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được a = , b = , c = 3.
Vậy phương trình của (P) là y =
b) (P) cắt trục tung tại điểm có tung độ y = –2 => –2 = a . 02 + b . 0 + c hay c = –2 (1).
Hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được a = , b = –2, c = –2.
Vậy phương trình của (P) là y = x2 – 2x – 2.
Lời giải
Hướng dẫn giải
Gọi giá tiễn mỗi viên ngọc lam, hoàng ngọc, ngọc bích lần lượt là x, y, z (triệu đồng).
Theo đề bài ta có:
– Một viên lam ngọc và hai viên hoàng ngọc trị giá gấp 3 lần một viên ngọc bích, suy ra x + 2y = 3z hay x + 2y –3z = 0 (1).
– Bảy viên lam ngọc và một viên hoàng ngọc trị giá gấp 8 lần một viên ngọc bích, suy ra 7x + y = 8z hay 7x + y – 8z = 0 (2).
– Giá tiền của bộ ba viên ngọc là 270 triệu đồng, suy ra x + y + z = 270 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được x = 90, y = 90, z = 90.
Vậy giá tiền mỗi viên ngọc đều là 90 triệu đồng.
Lời giải
Hướng dẫn giải
Gọi số tiền người thứ nhất, người thứ hai, người thứ ba đóng góp lần lượt là x, y,z (triệu đồng).
Theo đề bài ta có:
– Số tiền người đầu tiên đóng góp bằng một nửa tổng số tiền của những người còn lại, suy ra x = (y + z + 130) hay 2x – y – z = 130 (1).
– Người thứ hai đóng góp bằng tổng số tiền của những người còn lại, suy ra y = (x + z + 130) hay –x + 3y – z = 130 (2).
– Người thứ ba đóng góp bằng tổng số tiền của những người còn lại, suy ra z = (x + y + 130) hay –x – y + 4z = 130 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được x = 200, y = 150, z = 120.
Suy ra tổng số tiền là: 200 + 150 + 120 + 130 = 600 (triệu đồng).
Vậy chiếc thuyền này được mua giá 600 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
188 Đánh giá
50%
40%
0%
0%
0%