Trên thị trường hàng hoá có ba loại sản phẩm A, B, C với giá mỗi tấn tương ứng là x, y, z (đơn vị: triệu đồng, x ≥ 0, y ≥ 0, z ≥ 0). Lượng cung và lượng cầu của mỗi sản phẩm được cho trong bảng dưới đây:
Sản phẩm
Lượng cung
Lượng cầu
A
–60 + 4x – 2z
137 – 3x + y
B
–30 – x + 5y – z
131 + x –4y + z
C
–30 –2x + 3z
157 + y – 2z
Tìm giá của mỗi sản phẩm để thị trường cân bằng.
Trên thị trường hàng hoá có ba loại sản phẩm A, B, C với giá mỗi tấn tương ứng là x, y, z (đơn vị: triệu đồng, x ≥ 0, y ≥ 0, z ≥ 0). Lượng cung và lượng cầu của mỗi sản phẩm được cho trong bảng dưới đây:
Sản phẩm |
Lượng cung |
Lượng cầu |
A |
–60 + 4x – 2z |
137 – 3x + y |
B |
–30 – x + 5y – z |
131 + x –4y + z |
C |
–30 –2x + 3z |
157 + y – 2z |
Tìm giá của mỗi sản phẩm để thị trường cân bằng.
Câu hỏi trong đề: Bài tập cuối chuyên đề 1 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Thị trường cân bằng khi
Vậy giá mỗi mỗi sản phẩm A, B, C lần lượt là 54, 45 và 68 triệu đồng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1
(P) đi qua điểm M(–1; 3) => 3 = a(–1)2 + b(–1) + c => a – b + c = 3 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được a = , b = , c = 3.
Vậy phương trình của (P) là y =
b) (P) cắt trục tung tại điểm có tung độ y = –2 => –2 = a . 02 + b . 0 + c hay c = –2 (1).
Hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được a = , b = –2, c = –2.
Vậy phương trình của (P) là y = x2 – 2x – 2.
Lời giải
Gọi x, y, z, t lần lượt là bốn số nguyên dương thoả mãn cân bằng phương trình phản ứng hoá học:
xC2H6O + yO2 zCO2 + tH2O.
Số nguyên tử C ở hai vế bằng nhau, ta có 2x = z (1).
Số nguyên từ H ở hai vế bằng nhau, ta có 6x = 2t hay 3x = t (2).
Số nguyên từ O ở hai vế bằng nhau, ta có x + 2y = 2z + t (3).
Thay (1) và (2) vào (3) ta được x + 2y = 2 . 2x + 3x hay y = 3x.
Vậy y = 3x, z = 2x, t = 3x.
Để phương trình có hệ số đơn giản, ta chọn x = 1, khi đó y = 3, z = 2, t = 3.
Vậy phương trình cân bằng phản ứng hoá học là C2H6O + 3O22CO2 + 3H2O.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.