Câu hỏi:
13/07/2024 3,542
Ba loại tế bào A, B, C thực hiện số lần nguyên phân lần lượt là 3,4,5 và tổng số tế bào con tạo ra là 216. Biết rằng khi chưa thực hiện nguyên phân, số tế bào loại C bằng trung bình cộng số tế bào loại A và loại B. Sau khi thực hiện nguyên phân, tổng số tế bào con loại A và loại B được tạo ra ít hơn số tế bào con loại C được tạo ra là 40. Tính số tế bào con mỗi loại lúc ban đầu.
Ba loại tế bào A, B, C thực hiện số lần nguyên phân lần lượt là 3,4,5 và tổng số tế bào con tạo ra là 216. Biết rằng khi chưa thực hiện nguyên phân, số tế bào loại C bằng trung bình cộng số tế bào loại A và loại B. Sau khi thực hiện nguyên phân, tổng số tế bào con loại A và loại B được tạo ra ít hơn số tế bào con loại C được tạo ra là 40. Tính số tế bào con mỗi loại lúc ban đầu.
Câu hỏi trong đề: Bài tập cuối chuyên đề 1 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi số tế bào con ban đầu mỗi loại A, B, C lần lượt là x, y, z.
Theo đề bài ta có:
– Ba loại tế bào A, B, C thực hiện số lần nguyên phân lần lượt là 3,4,5. Suy ra số tế bào con mỗi loại A, B, C lần lượt là 23x, 24y, 25z hay 8x, 16y, 32z.
– Tổng số tế bào con tạo ra là 216, suy ra 8x + 16y + 32z = 216 hay x + 2y + 4z = 27 (1).
– Khi chưa thực hiện nguyên phân, số tế bào loại C bằng trung bình cộng số tế bào loại A và loại B, suy ra z = (x + y) hay x + y – 2z = 0 (2).
– Sau khi thực hiện nguyên phân, tổng số tế bào con loại A và loại B được tạo ra ít hơn số tế bào con loại C được tạo ra là 40, suy ra 8x + 16y = 32z – 40 hay x + 2y – 4z = –5 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được x = 5, y = 3, z = 4.
Vậy số tế bào con ban đầu mỗi loại A, B, C lần lượt là 5, 3, 4.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1
(P) đi qua điểm M(–1; 3) => 3 = a(–1)2 + b(–1) + c => a – b + c = 3 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được a = , b = , c = 3.
Vậy phương trình của (P) là y =
b) (P) cắt trục tung tại điểm có tung độ y = –2 => –2 = a . 02 + b . 0 + c hay c = –2 (1).
Hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được a = , b = –2, c = –2.
Vậy phương trình của (P) là y = x2 – 2x – 2.
Lời giải
Gọi x, y, z, t lần lượt là bốn số nguyên dương thoả mãn cân bằng phương trình phản ứng hoá học:
xC2H6O + yO2 zCO2 + tH2O.
Số nguyên tử C ở hai vế bằng nhau, ta có 2x = z (1).
Số nguyên từ H ở hai vế bằng nhau, ta có 6x = 2t hay 3x = t (2).
Số nguyên từ O ở hai vế bằng nhau, ta có x + 2y = 2z + t (3).
Thay (1) và (2) vào (3) ta được x + 2y = 2 . 2x + 3x hay y = 3x.
Vậy y = 3x, z = 2x, t = 3x.
Để phương trình có hệ số đơn giản, ta chọn x = 1, khi đó y = 3, z = 2, t = 3.
Vậy phương trình cân bằng phản ứng hoá học là C2H6O + 3O22CO2 + 3H2O.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.