Câu hỏi:

13/07/2024 1,816

Một quỹ đầu tư dự kiến dành khoản tiền 1,2 tỉ đồng để đầu tư vào cồ phiếu. Để thấy được mức độ rủi ro, các cổ phiếu được phân thành ba loại: rủi ro cao, rủi ro trung bình và rủi ro thấp. Ban Giám đốc của quỹ ước tính các cổ phiếu rủi ro cao, rủi ro trung bình và rủi ro thấp sẽ có lợi nhuận hằng năm lần lượt là 15%, 10% và 6%. Nếu đặt ra mục tiêu đầu tư có lợi nhuận trung bình là 9%/năm trên tổng số vốn đầu tư, thì quỹ nên đầu tư bao nhiêu tiền vào mỗi loại cổ phiếu? Biết rằng, để an toàn, khoản đầu tư vào các cổ phiếu rủi ro thấp sẽ gấp đôi tổng các khoản đầu tư vào các cổ phiếu thuộc hai loại còn lại.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi số tiền nên đầu tư vào mỗi loại cổ phiếu rủi ro cao, rủi ro trung bình và rủi ro thấp lần lượt là x, y, z (tỉ đồng).

Theo đề bài ta có:

– Tổng số tiền đầu tư là 1,2 tỉ, suy ra x + y + z = 1,2 (1).

– Mục tiêu đầu tư có lợi nhuận trung bình là 9%/năm trên tổng số vốn đầu tư, suy ra 15%x + 10%y + 6%z = 9% . 1,2 hay 15x + 10y + 6z = 10,8 (2).

– Khoản đầu tư vào các cổ phiếu rủi ro thấp sẽ gấp đôi tổng các khoản đầu tư vào các cổ phiếu thuộc hai loại còn lại, suy ra z = 2(x + y) hay 2x + 2y – z = 0 (3).

Từ (1), (2) và (3) ta có hệ phương trình: {x+y+z=1,215x+10y+6z=10,82x+2yz=0.

Giải hệ này ta được x = 0,4, y = 0, z = 0,8.

Vậy số tiền nên đầu tư vào mỗi loại cổ phiếu rủi ro cao, rủi ro trung bình và rủi ro thấp lần lượt là 0,4 tỉ đồng, 0 đồng, 0,8 tỉ đồng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1{0=a(2)2+b(2)+c0=a.12+b.1+c{4a2b+c=0   (1)a+b+c=0        (2).

(P) đi qua điểm M(–1; 3) =>  3 = a(–1)2 + b(–1) + c => a – b + c = 3 (3).

Từ (1), (2) và (3) ta có hệ phương trình: {4a2b+c=0a+b+c=0ab+c=3.

Giải hệ này ta được a = 32, b = 32, c = 3.

Vậy phương trình của (P) là y = 32x232x+3.

b) (P) cắt trục tung tại điểm có tung độ y = –2 => –2 = a . 02 + b . 0 + c hay c = –2 (1).

Hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2

{b2a=24=a.22+b.2+c{4a+b=0     (2)4a+2b+c=4   (3).

Từ (1), (2) và (3) ta có hệ phương trình: {c=24a+b=04a+2b+c=4.

Giải hệ này ta được a = 12, b = –2, c = –2.

Vậy phương trình của (P) là y = 12x2 – 2x – 2.

Lời giải

Gọi x, y, z, t lần lượt là bốn số nguyên dương thoả mãn cân bằng phương trình phản ứng hoá học:

xC2H6O + yO2 tozCO2 + tH2O.

Số nguyên tử C ở hai vế bằng nhau, ta có 2x = z (1).

Số nguyên từ H ở hai vế bằng nhau, ta có 6x = 2t hay 3x = t (2).

Số nguyên từ O ở hai vế bằng nhau, ta có x + 2y = 2z + t (3).

Thay (1) và (2) vào (3) ta được x + 2y = 2 . 2x + 3x hay y = 3x.

Vậy y = 3x, z = 2x, t = 3x.

Để phương trình có hệ số đơn giản, ta chọn x = 1, khi đó y = 3, z = 2, t = 3.

Vậy phương trình cân bằng phản ứng hoá học là C2H6O + 3O2to2CO2 + 3H2O.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay