Câu hỏi:
13/07/2024 958Một quỹ đầu tư dự kiến dành khoản tiền 1,2 tỉ đồng để đầu tư vào cồ phiếu. Để thấy được mức độ rủi ro, các cổ phiếu được phân thành ba loại: rủi ro cao, rủi ro trung bình và rủi ro thấp. Ban Giám đốc của quỹ ước tính các cổ phiếu rủi ro cao, rủi ro trung bình và rủi ro thấp sẽ có lợi nhuận hằng năm lần lượt là 15%, 10% và 6%. Nếu đặt ra mục tiêu đầu tư có lợi nhuận trung bình là 9%/năm trên tổng số vốn đầu tư, thì quỹ nên đầu tư bao nhiêu tiền vào mỗi loại cổ phiếu? Biết rằng, để an toàn, khoản đầu tư vào các cổ phiếu rủi ro thấp sẽ gấp đôi tổng các khoản đầu tư vào các cổ phiếu thuộc hai loại còn lại.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi số tiền nên đầu tư vào mỗi loại cổ phiếu rủi ro cao, rủi ro trung bình và rủi ro thấp lần lượt là x, y, z (tỉ đồng).
Theo đề bài ta có:
– Tổng số tiền đầu tư là 1,2 tỉ, suy ra x + y + z = 1,2 (1).
– Mục tiêu đầu tư có lợi nhuận trung bình là 9%/năm trên tổng số vốn đầu tư, suy ra 15%x + 10%y + 6%z = 9% . 1,2 hay 15x + 10y + 6z = 10,8 (2).
– Khoản đầu tư vào các cổ phiếu rủi ro thấp sẽ gấp đôi tổng các khoản đầu tư vào các cổ phiếu thuộc hai loại còn lại, suy ra z = 2(x + y) hay 2x + 2y – z = 0 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được x = 0,4, y = 0, z = 0,8.
Vậy số tiền nên đầu tư vào mỗi loại cổ phiếu rủi ro cao, rủi ro trung bình và rủi ro thấp lần lượt là 0,4 tỉ đồng, 0 đồng, 0,8 tỉ đồng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xăng sinh học E5 là hỗn hợp xăng không chì truyền thống và cồn sinh học (bio – ethanol). Trong loại xăng này chứa 5% cồn sinh học. Khi động cơ đốt cháy lượng cồn trên thì xảy ra phản ứng hoá học
C2H6O + O2 CO2 + H2O.
Cân bằng phương trình hoá học trên.
Câu 2:
Tìm phương trình của parabol (P): y = ax2 + bx + c (a ≠ 0), biết:
a) Parabol (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x = –2; x = 1 và đi qua điểm M(–1; 3);
b) Parabol (P) cắt trục tung tại điểm có tung độ y = –2 và hàm số đạt giá trị nhỏ nhất bằng –4 tại x = 2.
Câu 3:
Bốn ngư dân góp vốn mua chung một chiếc thuyền. Số tiền người đầu tiên đóng góp bằng một nửa tổng số tiền của những người còn lại. Người thứ hai đóng góp bằng tổng số tiền của những người còn lại. Người thứ ba đóng góp bằng tổng số tiền của những người còn lại. Người thứ tư đóng góp 130 triệu đồng. Chiếc thuyền này được mua giá bao nhiêu?
Câu 4:
Giải bài toán cổ sau:
Trăm trâu, trăm cỏ
Trâu đứng ăn năm
Trâu nằm ăn ba
Lụ khụ trâu già
Ba con một bó
Hỏi có bao nhiêu con trâu đứng, trâu nằm, trâu già?
Câu 5:
Cho A, B và C là ba dung dịch cùng loại acid có nồng độ khác nhau. Biết rằng nếu trộn ba dung dịch mỗi loại 100 ml thì được dung dịch nồng độ 0,4 M (mol/lít); nếu trộn 100 ml dung dịch A với 200 ml dung dịch B thì được dung dịch nồng độ 0,6 M; nếu trộn 100 ml dung dịch B với 200 ml dung dịch C thì được dung dịch nồng độ 0,3 M. Mỗi dung dịch A, B và C có nồng độ bao nhiêu?
Câu 6:
Một viên lam ngọc và hai viên hoàng ngọc trị giá gấp 3 lần một viên ngọc bích. Còn bảy viên lam ngọc và một viên hoàng ngọc trị giá gấp 8 lần một viên ngọc bích. Biết giá tiền của bộ ba viên ngọc này là 270 triệu đồng. Tính giá tiền mỗi viên ngọc.
Câu 7:
Ba loại tế bào A, B, C thực hiện số lần nguyên phân lần lượt là 3,4,5 và tổng số tế bào con tạo ra là 216. Biết rằng khi chưa thực hiện nguyên phân, số tế bào loại C bằng trung bình cộng số tế bào loại A và loại B. Sau khi thực hiện nguyên phân, tổng số tế bào con loại A và loại B được tạo ra ít hơn số tế bào con loại C được tạo ra là 40. Tính số tế bào con mỗi loại lúc ban đầu.
về câu hỏi!