Câu hỏi:
13/07/2024 4,834Kiểm tra xem mỗi bộ số (x; y; z) đã cho có là nghiệm của hệ phương trình tương ứng hay không.
a) (0; 3; –2), (12; 5; –13), (1; –2; 3);
b) (–2; 4; 0), (0; –3; 10), (1; –1; 5);
c) 4; 18; 78), (8; 11; 81), (12; 4; 84).
Quảng cáo
Trả lời:
a)
+) Thay bộ số (0; 3; –2) vào phương trình thứ nhất của hệ ta được:
0 + 3 . 3 + 2 . (–2) = 1 5 = 1 (sai). Vậy bộ số (0; 3; –2) không phải nghiệm của phương trình thứ nhất, do đó không phải nghiệm của hệ đã cho.
+) Thay bộ số (12; 5; –13) vào phương trình thứ nhất của hệ ta được:
12 + 3 . 5 + 2 . (–13) = 1 1 = 1 (đúng). Vậy bộ số (12; 5; –13) nghiệm đúng với phương trình thứ nhất của hệ đã cho.
Thay bộ số (12; 5; –13) vào phương trình thứ hai của hệ ta được:
5 . 12 – 5 + 3 . (–13) = 16 16 = 16 (đúng). Vậy bộ số (12; 5; –13) nghiệm đúng với phương trình thứ hai của hệ đã cho.
Thay bộ số (12; 5; –13) vào phương trình thứ ba của hệ ta được:
–3 . 12 + 7 . 5 + (–13) = –14 –14 = –14 (đúng). Vậy bộ số (12; 5; –13) nghiệm đúng với phương trình thứ ba của hệ đã cho.
Vì bộ số (12; 5; –13) nghiệm đúng với cả ba phương trình nên nó là nghiệm của hệ phương trình đã cho.
+) Thay bộ số (1; –2; 3) vào phương trình thứ nhất của hệ ta được:
1 + 3 . (–2) + 2 . 3 = 1 1 = 1 (đúng). Vậy bộ số (1; –2; 3) nghiệm đúng với phương trình thứ nhất của hệ đã cho.
Thay bộ số (1; –2; 3) vào phương trình thứ hai của hệ ta được:
5 . 1 – (–2) + 3 . 3 = 16 16 = 16 (đúng). Vậy bộ số (1; –2; 3) nghiệm đúng với phương trình thứ hai của hệ đã cho.
Thay bộ số (1; –2; 3) vào phương trình thứ ba của hệ ta được:
–3 . 1 + 7 . (–2) + 3 = –14 –14 = –14 (đúng). Vậy bộ số (1; –2; 3) nghiệm đúng với phương trình thứ ba của hệ đã cho.
Vì bộ số (1; –2; 3) nghiệm đúng với cả ba phương trình nên nó là nghiệm của hệ phương trình đã cho.
b)
+) Thay bộ số (–2; 4; 0) vào phương trình thứ nhất của hệ ta được:
3 . (–2) – 4 + 4 . 0 = –10 –10 = –10 (đúng). Vậy bộ số (–2; 4; 0) nghiệm đúng với phương trình thứ nhất của hệ đã cho.
Thay bộ số (–2; 4; 0) vào phương trình thứ hai của hệ ta được:
– (–2) + 4 + 2 . 0 = 6 6 = 6 (đúng). Vậy bộ số (–2; 4; 0) nghiệm đúng với phương trình thứ hai của hệ đã cho.
Thay bộ số (–2; 4; 0) vào phương trình thứ ba của hệ ta được:
2 . (–2) – 4 + 0 = –8 –8 = –8 (đúng). Vậy bộ số (–2; 4; 0) nghiệm đúng với phương trình thứ ba của hệ đã cho.
Vì bộ số (–2; 4; 0) nghiệm đúng với cả ba phương trình nên nó là nghiệm của hệ phương trình đã cho.
+) Thay bộ số (0; –3; 10) vào phương trình thứ nhất của hệ ta được:
3 . 0 – (–3) + 4 . 10 = –10 43 = –10 (sai). Vậy bộ số (0; –3; 10) không phải nghiệm của phương trình thứ nhất, do đó không phải nghiệm của hệ đã cho.
+) Thay bộ số (1; –1; 5) vào phương trình thứ nhất của hệ ta được:
3 . 1 – (–1) + 4 . 5 = –10 24 = –10 (sai). Vậy bộ số (1; –1; 5) không phải nghiệm của phương trình thứ nhất, do đó không phải nghiệm của hệ đã cho.
c)
+) Thay bộ số (4; 18; 78) vào phương trình thứ nhất của hệ ta được:
4 + 18 + 78 = 100 100 = 100 (đúng). Vậy bộ số (4; 18; 78) nghiệm đúng với phương trình thứ nhất của hệ đã cho.
Thay bộ số (4; 18; 78) vào phương trình thứ hai của hệ ta được:
Vì bộ số (4; 18; 78) nghiệm đúng với cả hai phương trình nên nó là nghiệm của hệ phương trình đã cho.
+) Thay bộ số (8; 11; 81) vào phương trình thứ nhất của hệ ta được:
8 + 11 + 81 = 100 100 = 100 (đúng). Vậy bộ số (8; 11; 81) nghiệm đúng với phương trình thứ nhất của hệ đã cho.
Thay bộ số (8; 11; 81) vào phương trình thứ hai của hệ ta được:
5 . 8 + 3 . 11 + . 81 = 100 100 = 100 (đúng). Vậy bộ số (8; 11; 81) nghiệm đúng với phương trình thứ hai của hệ đã cho.Vì bộ số (8; 11; 81) nghiệm đúng với cả hai phương trình nên nó là nghiệm của hệ phương trình đã cho.
+) Thay bộ số (12; 4; 84) vào phương trình thứ nhất của hệ ta được:
12 + 4 + 84 = 100 100 = 100 (đúng). Vậy bộ số (12; 4; 84) nghiệm đúng với phương trình thứ nhất của hệ đã cho.
Thay bộ số (12; 4; 84) vào phương trình thứ hai của hệ ta được:
5 . 12 + 3 . 4 + . 84 = 100 100 = 100 (đúng). Vậy bộ số (12; 4; 84) nghiệm đúng với phương trình thứ hai của hệ đã cho.Vì bộ số (12; 4; 84) nghiệm đúng với cả hai phương trình nên nó là nghiệm của hệ phương trình đã cho.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số tiền đầu tư cho khoản thứ nhất, thứ hai, thứ ba lần lượt là x, y, z (triệu đồng).
Theo đề bài ta có: x + y + z = 1000 (1)
Số tiền đầu tư cho khoản thứ nhất bằng tổng số tiền đầu tư cho khoản thứ hai và thứ ba, do đó: x = y + z hay x – y – z = 0 (2)
Lãi suất cho ba khoản đầu tư lần lượt là 6%, 8%, 15% và tổng số tiền lãi thu được là 84 triệu đồng nên 6%x + 8%y + 15%z = 84 hay 6x + 8y + 15z = 8400 (3)
Từ (1), (2) và (3) ta có hệ phương trình:Giải hệ này ta được x = 500, y = 300, z =200.
Vậy số tiền đầu tư cho khoản thứ nhất, thứ hai, thứ ba lần lượt là 500 triệu đồng, 300 triệu đồng và 200 triệu đồng.
Lời giải
a)
Vậy hệ phương trình đã cho có nghiệm (x; y; z) = (2; –1; 1)
b)
Phương trình thứ ba của hệ vô nghiệm. Vậy hệ đã cho vô nghiệm.
c)
Hai phương trình (2) và (3) tương đương. Khi đó, hệ phương trình đưa về:
Đặt z = t với t là số thực bất kì, ta có:
Vậy hệ phương trình đã cho có vô số nghiệm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận