Câu hỏi:

14/06/2022 862

Chứng minh rằng các đẳng thức sau đúng với mọi n*.

a) 13+23+33++n3=n2(n+1)24;

b) 1.4+2.7+3.10++n(3n+1)=n(n+1)2;

c) 11.3+13.5+15.7++1(2n1)(2n+1)=n2n+1.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Bước 1. Với n = 1, ta có 13 = 12(1+1)24. Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:13+23+33++k3=k2(k+1)24.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:13+23+33++k3+(k+1)3=(k+1)2[(k+1)+1]24.

Sử dụng giả thiết quy nạp, ta có:

13+23+33++k3+(k+1)3

=k2(k+1)24+(k+1)3

=k2(k+1)24+4(k+1)34

=(k+1)2[k2+4(k+1)]4

=(k+1)2(k2+4k+4)4

=(k+1)2(k+2)24=(k+1)2[(k+1)+1]24.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n 1.

b) Bước 1. Với n = 1, ta có 1(3 . 1 + 1) = 4 = 1(1 + 1)2. Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:

1.4+2.7+3.10++k(3k+1)=k(k+1)2.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:

1.4+2.7+3.10++k(3k+1)+(k+1)[3(k+1)+1]=(k+1)[(k+1)+1]2.

Sử dụng giả thiết quy nạp, ta có:1.4+2.7+3.10++k(3k+1)+(k+1)[3(k+1)+1]

=k(k+1)2+(k+1)[3(k+1)+1]

=(k+1)[k(k+1)+3(k+1)+1]

=(k+1)(k2+4k+4)

=(k+1)(k+2)2=(k+1)[(k+1)+1]2.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n 1.

c) Bước 1. Với n = 1, ta có 1(2.11)(2.1+1)=13=12.1+1. Do đó đẳng thức đúng với n = 1.

Bước 2. Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là có:11.3+13.5+15.7++1(2k1)(2k+1)=k2k+1.

Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:11.3+13.5+15.7++1(2k1)(2k+1)+1[2(k+1)1][2(k+1)+1]=k+12(k+1)+1.

Sử dụng giả thiết quy nạp, ta có:11.3+13.5+15.7++1(2k1)(2k+1)+1[2(k+1)1][2(k+1)+1]

=k2k+1+1[2(k+1)1][2(k+1)+1]

=k2k+1+1(2k+1)(2k+3)

=k(2k+3)+1(2k+1)(2k+3)

=2k2+3k+1(2k+1)(2k+3)

=(k+1)(2k+1)(2k+1)(2k+3)=k+12k+3=k+12(k+1)+1.

Vậy đẳng thức đúng với n = k + 1.

Theo nguyên lí quy nạp toán học, đẳng thức đúng với mọi số tự nhiên n 1.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng bất đẳng thức 1+12+13++1nn+12 đúng với mọi n*.

Xem đáp án » 12/07/2024 11,721

Câu 2:

Chứng minh rằng với mọi n *:

a) 3n – 1 – 2n chia hết cho 4;

b) 7n – 4n – 3n chia hết cho 12.

Xem đáp án » 12/07/2024 1,547

Câu 3:

a) Tìm ba số hạng đầu tiên trong khai triển của (1 + 2x)6, các số hạng được viết theo thứ tự số mũ của x tăng dần.

b) Sử dụng kết quả trên, hãy tính giá trị gần đúng của 1,026.

Xem đáp án » 11/07/2024 1,375

Câu 4:

Tìm hệ số của x3 trong khai triển:

a) (1 – 3x)8;

b) (1+x2)7.

Xem đáp án » 11/07/2024 1,253

Câu 5:

Với một bình rỗng có dung tích 2 l, một bạn học sinh thực hiện thí nghiệm theo các bước như sau:

Bước 1: Rót 1 l nước vào bình, rồi rót đi một nửa lượng nước trong bình.

Bước 2: Rót 1 l nước vào bình, rồi lại rót đi một nửa lượng nước trong bình.

Cứ như vậy, thực hiện các bước 3,4,...

Kí hiệu an là lượng nước có trong bình sau bước n(n*).

a) Tính a1, a2, a3. Từ đó dự đoán công thức tính an với n *.

b) Chứng minh công thức trên bằng phương pháp quy nạp toán học.

Xem đáp án » 12/07/2024 1,251

Câu 6:

Chứng minh rằng 8n ≥ n3 với mọi n *.

Xem đáp án » 14/06/2022 1,242

Câu 7:

Tìm hệ số của x5 trong khai triển (2x + 3)(x – 2)6.

Xem đáp án » 11/07/2024 951