Câu hỏi:

11/07/2024 1,709

Chứng minh công thức nhị thức Newton (công thức (1), trang 35 ) bằng phương pháp quy nạp toán học.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

+) Với n = 1, ta có: (a + b)1 = a + b = C10a1+C11b1.

Vậy công thức đúng với n = 1.

+) Với k ≥ 1 là một số nguyên dương tuỳ ý mà công thức đúng đúng, ta phải chứng minh công thức cũng đúng với k + 1, tức là:

(a+b)k+1=Ck+10ak+1+Ck+11a(k+1)1b+...+Ck+1(k+1)1ab(k+1)1+Ck+1k+1bk+1.

Thật vậy, theo giả thiết quy nạp ta có:

(a+b)k=Ck0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk.

Khi đó:

(a+b)k+1=(a+b)(a+b)k

=a(a+b)k+b(a+b)k

=a(Ck0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk)

+b(Ck0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk)

=(Ck0ak+1+Ck1akb+Ck2ak1b2+...+Ckk1a2bk1+Ckkabk)

+(Ck0akb+Ck1ak1b2+...+Ckk2a2bk1+Ckk1abk+Ckkbk+1)

=Ck0ak+1+(Ck0+Ck1)akb+(Ck1+Ck2)ak1b2+...

+(Ckk2+Ckk1)a2bk1+(Ckk1+Ckk)abk+Ckkbk+1

=1.ak+1+Ck+11akb+Ck+12ak1b2+...+Ck+1k1a2bk1+Ck+1kabk+1.bk+1 

(vì Cki+Cki+1=Ck+1i+1  0ik, i  ℕ, k ℕ*)

=Ck+10ak+1+Ck+11a(k+1)1b+...+Ck+1(k+1)1ab(k+1)1+Ck+1k+1bk+1.

Vậy công thức cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, công thức đã cho đúng với mọi n  ℕ*.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Có (3x – 1)7

=C70(3x)7+C71(3x)6(1)+C72(3x)5(1)2+C73(3x)4(1)3

+C74(3x)3(1)4+C75(3x)2(1)5+C76(3x)1(1)6+C77(1)7

= 2187x7 – 5103x6 + 5103x5 – 2835x4 + 945x3 – 189x2 + 21x – 1.

a) a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7

= (–1) + 21 + (–189) + 945 + (–2835) + 5103 + (–5103) + 2187 = 128.

b) a0 + a2 + a4 + a6

= (–1) + (–189) + (–2835) + (–5103) = –8128.

Lời giải

Hướng dẫn giải

Số cách lấy k quả cầu từ hộp A rồi cho vào hộp B là C10k với 0 ≤ k ≤ 10.

Như vậy có tất cả C100+C101+C102+...+C109+C1010 cách.

Lại có C100+C101+C102+...+C109+C1010=210=1024

nên có tổng cộng 1024 cách lấy.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay