Câu hỏi:

12/07/2024 7,091 Lưu

Cho elip (E):x225+y29=1. Tìm toạ độ điểm M (E) sao cho độ dài F2M lớn nhất, biết F2 là một tiêu điểm có hoành độ dương của (E).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Elip (E) có phương trình x225+y29=1 a2 = 25 và b2 = 9  a = 5 và b = 3.

c2 = a2 – b2 = 25 – 9 = 16  c = 4.

Gọi toạ độ của M là (x; y). Áp dụng công thức bán kính qua tiêu ta có:

MF2 = a – ex = a – cax = 5 – 45x.

x ≥ –a hay x ≥ –5 45x 45. (–5)  45x –5

MF2 5 – 45. (–5)  MF2 ≤ 9.

Đẳng thức xảy ra khi x = –5.

Vậy độ dài F2M lớn nhất khi M có toạ độ (–5; 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ trục toạ độ sao cho Mặt Trời trùng với tiêu điểm F1 của elip. Khi đó, áp dụng công thức bán kính qua tiêu ta có, khoảng cách giữa Trái Đất và Mặt Trời là:

MF1 = a + ex với x là hoành độ của điểm biểu diễn Trái Đất và –a ≤ x ≤ a.

Do đó a + e . (–a) ≤ MF1 ≤ a + e . a

hay 147055090 ≤ MF1 ≤ 152141431

Vậy khoảng cách nhỏ nhất và lớn nhất giữa Trái Đất và Mặt Trời lần lượt là 147055090 km và 152141431 km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP