Câu hỏi:

12/07/2024 2,881

Mặt Trăng chuyển động theo một quỹ đạo là đường elip có tâm sai bằng 0,0549 và nhận tâm Trái Đất là một tiêu điểm. Biết khoảng cách gần nhất giữa tâm Trái Đất và tâm Mặt Trăng là 362600 km. Tính khoảng cách xa nhất giữa tâm Trái Đất và tâm Mặt Trăng.

Nguồn: https://www. universetoday.com

Mặt Trăng chuyển động theo một quỹ đạo là đường elip có tâm sai bằng 0,0549 và nhận tâm Trái Đất là một tiêu điểm. Biết khoảng cách gần nhất giữa tâm Trái Đất và tâm Mặt Trăng là 362600 km. Tính khoảng cách xa nhất giữa tâm Trái Đất và tâm Mặt Trăng. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Chọn hệ trục toạ độ sao cho tâm Trái Đất trùng với tiêu điểm F1 của elip và trục Ox đi qua hai tiêu điểm của elip, đơn vị trên các trục toạ độ là kilômét.

Khi đó phương trình của elip có dạng x2a2+y2b2=1 (a > b > 0).

Gọi toạ độ của Mặt Trăng là M(x; y) thì khoảng cách giữa tâm Trái Đất và tâm Mặt Trăng là MF1 = a – ex ≥ a – ea (vì x ≤ a). Do đó khoảng cách gần nhất giữa tâm Trái Đất và tâm Mặt Trăng là a – ea, suy ra a – ea = 362600 =>a = 3626001e.

Mặt khác vì x ≥ –a nên a – ex ≤ a + ea nên khoảng cách xa nhất giữa tâm Trái Đất và tâm Mặt Trăng là a + ea = a(1 + e) = 3626001e(1+e) 404726 (km).

Vậy khoảng cách xa nhất giữa tâm Trái Đất và tâm Mặt Trăng là 404726 km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Gọi phương trình chính tắc của parabol là y2= 2px (p > 0).

Ta có p/2 = OF = 1/6 p = 1/3

=> phương trình chính tắc của parabol là y2= 2/3 x

b) Theo công thức bán kính qua tiêu ta có:

MF = x + p/2 = 0,06 + 1/6 = 59/150 (m).

Vậy khoảng cách từ điểm M(0,06; 0,2) trên ăng-ten đến F là 59/150 mét.

Lời giải

Hướng dẫn giải

a) Có a2 = 25, b2 = 9 =>  a = 5, b = 3, c=a2b2=259=4,  ca=45.

Toạ độ các đỉnh của elip là A1(–5; 0), A2(5; 0), B1(0; –3), B2(0; 3).

Toạ độ các tiêu điểm của elip là F1(–4; 0), F2(4; 0).

Tâm sai của elip là e = 4/5

b) Gọi phương trình chính tắc của (P) là y2 = 2px (p > 0).

(P) có tiêu điểm là F2(4; 0) => p/2 = 4 => p = 8

=> Phương trình chính tắc của parabol (P) là y2 = 16x.

c) Gọi phương trình chính tắc của (H) là x2a2y2b2=1 (a > 0, b > 0).

(H) có hai đỉnh là F1(–4; 0), F2(4; 0); hai tiêu điểm là A1(–5; 0), A2(5; 0)

=> a = 4, c = 5 => b = c2a2=5242=3.

Vậy phương trình chính tắc của (H) là x216y29=1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP