Câu hỏi:

14/06/2022 5,023

Cho hình chóp S.ABCDSC=x(0<x<a3),  các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi  x=amn(m,n*). Mệnh đề nào sau đây đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Cho hình chóp S.ABCD có SC=x( 0<x< a căn3)  các cạnh còn lại đều bằng a. Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi x=(a căn m)/ n( m,n thuộc N*)  . Mệnh đề nào sau đây đúng? (ảnh 1)

SA=SB=SD=a  nên hình chiếu vuông góc của S trên (ABCD)  trùng với tâm đường tròn ngoại tiếp tam giác ABD.

Gọi H là tâm đường tròn ngoại tiếp tam giác

 ABDSH(ABCD)

Do tam giác ABD  cân tại   AHAC

Dễ dàng chứng minh được: ΔSBD=ΔABD(c.c.c)SO=AO=AC2ΔSAC vuông tại S (tam giác có trung tuyến ứng với một cạnh bằng nửa cạnh ấy)

 AC=SA2+SC2=a2+x2

Áp dụng hệ thức lượng trong tam giác vuông SAC   SH=SA.SCAC=axa2+x2

Ta có  OA=12AC=12a2+x2

OB=AB2OA2=a2a2+x24=3a2x22BD=3a2x2

 Do ABCD là hình thoi   SABCD=12AC.BD

Khi đó ta có:  VS.ABCD=13SH.SABCD=16.axa2+x2a2+x2.3a2x2=16ax3a2x2

Áp dụng BĐT Cosi ta có:  x3a2x2x2+3a2x22=3a22VS.ABCD16a3a22=a34

Dấu “=” xảy ra  x2=3a2x2x=3a22=a62=amn{m=6n=2m+2n=10

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho khối chóp SABCD có đáy là hình vuông cạnh a2,ΔSAC  vuông tại S và nằm trong mặt phẳng vuông góc với đáy, cạnh bên SA tạo với đáy góc 60o  . Tính thể tích V của khối chóp SABCD.

Xem đáp án » 14/06/2022 23,895

Câu 2:

Trong không gian với hệ trục tọa độ Oxyz cho a=(1;2;3)  b=(2;1;1) . Khẳng định nào sau đây đúng?

Xem đáp án » 14/06/2022 8,000

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D cạnh bên SA vuông góc với mặt đáy. Biết AB=2AD=2DC=2a góc giữa hai mặt phẳng (SAB) và (SBC) là 60 độ . Độ dài cạnh SA là:

Xem đáp án » 17/06/2022 3,764

Câu 4:

Cho hàm số y=x3+bx2+cx+d,(b,c,d)  có đồ thị như hình vẽ. Mệnh đề nào dưới đây là đúng?

Cho hàm số y=x^3+bx^2+cx+d (b,c,d thuộc R)  có đồ thị như hình vẽ. Mệnh đề nào dưới đây là đúng? (ảnh 1)

Xem đáp án » 14/06/2022 3,525

Câu 5:

Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B( 2;1;-3) đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0 , (R): 2x-y+z=0 là:

Xem đáp án » 14/06/2022 2,807

Câu 6:

Trên đồ thị  (C):y=x+1x+2 có bao nhiêu điểm M mà tiếp tuyến với (C) tại M song song với đường thẳng   d:x+y=1.

Xem đáp án » 14/06/2022 2,754

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store