Câu hỏi:

14/06/2022 4,080 Lưu

Cho hàm số y=x3+bx2+cx+d,(b,c,d)  có đồ thị như hình vẽ. Mệnh đề nào dưới đây là đúng?

Cho hàm số y=x^3+bx^2+cx+d (b,c,d thuộc R)  có đồ thị như hình vẽ. Mệnh đề nào dưới đây là đúng? (ảnh 1)

A. b<0,c<0,d>0.
B.   b>0,c<0,d>0.
C. b<0,c>0,d<0.
D.   b>0,c>0,d>0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Với x=0d>0

Từ đồ thị ta thấy nếu gọi x1;x2 là hai điểm cực trị của hàm số thì khi đó

{x1+x2=2b3a>0x1x2=c3a<0{b<0c<0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Cho khối chóp SABCD có đáy là hình vuông cạnh a/ căn2, tam giác SAC  vuông tại S và nằm trong mặt phẳng vuông góc với đáy, cạnh bên SA tạo với đáy góc  60 độ . Tính thể tích V của khối chóp SABCD. (ảnh 1)

Gọi H là hình chiếu của S trên AC.

Ta có   {(SAC)(ABCD)=AC(SAC)SHACSH(ABCD)

Ta có:  (SA,(ABCD))=(SA,AH)=(SA,AC)=SAC

Ta có:  AC=AB2=a22.2=a

Xét ΔSAC  vuông tại S ta có:  {SA=AC.cos60o=a2SC=AC.sin60o=a32

Áp dụng hệ thức lượng cho ΔSAC  vuông tại S và có đường cao SH ta có:

 SH=SA.SCAC=a2.a32a=a34

VS.ABCD=13SA.SABCD=13.a34.a22=a3324VS.ABCD=13SA.SABCD=13.a34.a22=a3324

 

Lời giải

Đáp án C

Gọi điểm  I(a,b,c) thỏa mãn  IA+IBIC=0 

Ta có:  {IA=(3a;b;c)IB=(a;b;3c)IC=(a;3b;c)IA+IBIC=(3a;3b;3c)=0

{3a=03b=03c=0{a=3b=3c=3I(3;3;3)

Ta có |MA+MBMC|=|MI+IA+MI+IBMIIC|=|MI+(IA+IBIC)|=|MI|=MI

Do đó  nhỏ nhất khi và chỉ khi MI nhỏ nhất  là hình chiếu của I trên (P)

Ta thấy 3+3+33=0I(P)

Nên hình chiếu của I trên (P) là chính nó

Do đó MIM(3;3;3)

Câu 3

A. Vecto a   không vuông góc với  b
B. Vecto  a cùng phương với  b
C.  |a|=14.
D.  [a;b]=(5;7;3)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP