Câu hỏi:

15/06/2022 8,494

Trong không gian với hệ tọa độ Oxyz, cho A(3;0;0);B(0;0;3);C(0;3;0)  và mặt phẳng (P):x+y+z3=0.   Tìm trên (P) điểm M sao cho |MA+MBMC|   nhỏ nhất

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi điểm  I(a,b,c) thỏa mãn  IA+IBIC=0 

Ta có:  {IA=(3a;b;c)IB=(a;b;3c)IC=(a;3b;c)IA+IBIC=(3a;3b;3c)=0

{3a=03b=03c=0{a=3b=3c=3I(3;3;3)

Ta có |MA+MBMC|=|MI+IA+MI+IBMIIC|=|MI+(IA+IBIC)|=|MI|=MI

Do đó  nhỏ nhất khi và chỉ khi MI nhỏ nhất  là hình chiếu của I trên (P)

Ta thấy 3+3+33=0I(P)

Nên hình chiếu của I trên (P) là chính nó

Do đó MIM(3;3;3)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Cho khối chóp SABCD có đáy là hình vuông cạnh a/ căn2, tam giác SAC  vuông tại S và nằm trong mặt phẳng vuông góc với đáy, cạnh bên SA tạo với đáy góc  60 độ . Tính thể tích V của khối chóp SABCD. (ảnh 1)

Gọi H là hình chiếu của S trên AC.

Ta có   {(SAC)(ABCD)=AC(SAC)SHACSH(ABCD)

Ta có:  (SA,(ABCD))=(SA,AH)=(SA,AC)=SAC

Ta có:  AC=AB2=a22.2=a

Xét ΔSAC  vuông tại S ta có:  {SA=AC.cos60o=a2SC=AC.sin60o=a32

Áp dụng hệ thức lượng cho ΔSAC  vuông tại S và có đường cao SH ta có:

 SH=SA.SCAC=a2.a32a=a34

VS.ABCD=13SA.SABCD=13.a34.a22=a3324VS.ABCD=13SA.SABCD=13.a34.a22=a3324

 

Câu 2

Lời giải

Đáp án C

Ta có: a.b=1.22.(1)+3.(1)=10a,b   không vuông góc    loại đáp án A.

Ta thấy không tồn tại số k để  a=kba,b không cùng phương  loại đáp án B.

 |a|=1+(2)2+32=14 Đáp án C đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP