Câu hỏi:

11/01/2020 14,470

Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D, AB = AD =a,CD = 2a. Hình chiếu của S lên mặt phẳng (ABCD) trùng với trung điểm của BD. Biết thể tích tứ diện SBCD bằng a36. Tính khoảng cách từ A đến mặt phẳng (SBC) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D.

Cách 1:

Gọi M là trung điểm của CD, ABMD là hình vuông cạnh bằng 1.

BM=12DC tam giác BCD vuông cân tại B.

Ta có: 

Cách 2: Gọi M là trung điểm của  CD, H  là trung điểm của  BD

=> Tam giác BCD vuông tại B.

+) Ta có: AH // (SBC)

Do đó 

 Tam giác SHB có

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B.

Gọi hình chiếu vuông góc hạ từ A đến mặt phẳng (BCD) là H. Khoảng cách từ A đến mặt phẳng (BCD)AH.

Vì tứ diện đều nên H là trọng tâm tam giác BCD

BH=23.3a2=a33

Trong tam giác  ABH

AH=AB2-BH2=a2-a23=a63

Lời giải

Chọn D.

Do tam giác A'AB vuông tại A nên theo pytago ta có

Lại có tam giác ABC vuông cân tại B nên 

Thể tích khối lăng trụ đã cho

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP