Câu hỏi:

19/06/2022 216 Lưu

Tìm tất cả các giá trị thực của tham số m để phương trình  log25x1.log42.5x2=m có nghiệm x1

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Phương pháp:

Biến đổi, đặt log25x1=t,  t2
Cách giải:
log25x1.log42.5x2=mlog25x1.log2225x1=m12log25x1.1+log25x1=mlog225x1+log25x12m=0
Đặt log25x1=t,  t2, phương trình trở thành:
t2+t2m=0,  t2t2+t=2m,  t2*

Xét hàm số ft=t2+t,  t2 có:

f't=2t+1>0,   t2Hàm số đồng biến trên khoảng 2;+

Tìm tất cả các giá trị thực của tham số m để phương trình  (ảnh 1)

Để phương trình (*) có nghiệm thì  2m6m3

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

Phương pháp:

Dựa vào các công thức liên quan đến logarit.

Cách giải:

Khẳng định đúng là: logyx=logaxlogay, với a,b, x, y là các số thực dương khác 1.

Câu 2

Lời giải

Đáp án C

Phương pháp:

Xác định khoảng mà tại đó y'0, dấu “=” xảy ra ở hữu hạn điểm.

Cách giải: 
y=x3+3x2+2y'=3x2+6xy'=0x=0x=2
Bảng xét dấu y’:
Tìm khoảng nghịch biến của hàm số  y = x^3 + 3x^2 + 2 (ảnh 1)
Hàm số nghịch biến trên khoảng (-2;0)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP