Câu hỏi:

16/01/2020 12,216

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D. SA vuông góc với mặt phẳng đáy (ABCD); AB = 2a, AC = CD=a. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB cắt các cạnh SA, SB lần lượt tại M và N. Tính thể tích khối chóp S.CDMN theo thể tích khối chóp S.ABCD 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

Gọi K là trung điểm của AB.

DC//AB => DC//(SAB)=> DC//MN

Do đó

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B.

Gọi hình chiếu vuông góc hạ từ A đến mặt phẳng (BCD) là H. Khoảng cách từ A đến mặt phẳng (BCD)AH.

Vì tứ diện đều nên H là trọng tâm tam giác BCD

BH=23.3a2=a33

Trong tam giác  ABH

AH=AB2-BH2=a2-a23=a63

Lời giải

Chọn D.

Do tam giác A'AB vuông tại A nên theo pytago ta có

Lại có tam giác ABC vuông cân tại B nên 

Thể tích khối lăng trụ đã cho

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP