Câu hỏi:
05/07/2022 177Cho số phức \[z = a + bi{\rm{ }}\left( {a,{\rm{ }}b \in \mathbb{R}} \right)\] thỏa mãn \[\left| z \right| = 5\] và \[z\left( {2 + i} \right)\left( {1 - 2i} \right)\] là một số thực. Tính \[\left| a \right| + \left| b \right|\].
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Bắt đầu thiQuảng cáo
Trả lời:
Đáp án B
Giả sử \[z = a + bi\;\left( {a,b \in \mathbb{R}} \right)\]. Từ \[\left| z \right| = 5 \Rightarrow {a^2} + {b^2} = 25\].
Ta có \[z\left( {2 + i} \right)\left( {1 - 2i} \right) = \left( {a + bi} \right)\left( {4 - 3i} \right) = \left( {4a + 3b} \right) + \left( {4b - 3a} \right)i\] là số thực.
Nên \[4b - 3a = 0 \Rightarrow b = \frac{{3a}}{4} \Rightarrow {a^2} + {\left( {\frac{{3a}}{4}} \right)^2} = 25 \Leftrightarrow \left| a \right| = 4 \Rightarrow \left| b \right| = 3 \Rightarrow \left| a \right| + \left| b \right| = 7.\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các hàm số \[y = {\log _a}x\] và \[y = {\log _b}x\] có đồ thị như hình vẽ. Đường thẳng \[x = 5\] cắt trục hoành, đồ thị hàm số \[y = {\log _a}x\] và \[y = {\log _b}x\] lần lượt tại các điểm \[A,{\rm{ }}B,{\rm{ }}C.\] Biết rằng \[BC = 2AB.\] Mệnh đề nào sau đây là đúng?
Câu 2:
Trong không gian Oxyz, viết phương trình đường thẳng d đi qua điểm \[A\left( {1; - 1;3} \right)\], song song với mặt phẳng \[\left( P \right):x + 4y - 2z + 1 = 0\] và cắt đường thẳng \[d':\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{1}.\]
Câu 3:
Cho Parabol \[\left( P \right):y = {x^2}\] và hai điểm A, B thuộc (P) sao cho \[AB = 2.\] Diện tích hình phẳng giới hạn bởi (P) và đường thẳng \[AB\] đạt giá trị lớn nhất bằng
Câu 4:
Trong không gian Oxyz, cho hai điểm \[B\left( {2;{\mkern 1mu} - 1;{\mkern 1mu} - 3} \right)\], \[C\left( { - 6;{\mkern 1mu} - 1;{\mkern 1mu} {\mkern 1mu} 3} \right)\]. Trong các tam giác ABC thỏa mãn các đường trung tuyến kẻ từ B và C vuông góc với nhau, điểm \[A\left( {a;b;0} \right)\], (\[b > 0\]) sao cho giá trị của \[\cos A\] nhỏ nhất. Tính \[a + b.\]
Câu 5:
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\sin x + f\left( x \right)} \right]dx} \] bằng
Câu 6:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Côsin của góc giữa đường thẳng SC và mặt phẳng \[\left( {SAB} \right)\] bằng
Câu 7:
Từ một tấm tôn dạng hình tam giác vuông với hai cạnh góc vuông bằng \[3m\] và \[4m,\] một anh thợ cần cắt một tấm tôn có dạng hình chữ nhật nội tiếp tam giác trên. Anh ta gò tấm tôn hình chữ nhật này thành một hình trụ không đáy (như hình vẽ) để đổ thóc vào trong. Thể tích lớn nhất của khối trụ thu được gần nhất với kết quả nào dưới đây?
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận