Câu hỏi:
05/07/2022 480Gọi S là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ S, tính xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1.
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án B
Có tất cả \[9.10.10.10.10.10 = {9.10^5}\] số tự nhiên có 6 chữ số.
Số cần tìm có dạng \[\overline {{a_1}{a_2}...{a_6}} \]
+ TH1: \[{a_1} = 1\].
Số cách chọn vị trí cho chữ số 0 là \[6 - 1 = 5\] cách.
Số cách chọn 4 chữ số còn lại là \[8.7.6.5\] cách.
Trường hợp này có tất cả \[5.8.7.6.5 = 8400\] số thỏa mãn.
+ TH2: \[{a_1} \ne 1 \Rightarrow {a_1}\] có 8 cách chọn (trừ chữ số 0 và 1).
Số cách chọn vị trí cho chữ số 0 và 1 là \[5.4 = 20\] cách.
Số cách chọn 3 chữ số còn lại là \[7.6.5\] cách.
Trường hợp này có tất cả \[8.20.7.6.5 = 33600\] số thỏa mãn.
Vậy xác suất cần tìm là \[\frac{{8400 + 33600}}{{{{9.10}^5}}} = \frac{7}{{150}}.\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Ta có \[\begin{array}{l}C\left( {5;{{\log }_b}5} \right),B\left( {5;{{\log }_a}5} \right),A\left( {5;0} \right);\overrightarrow {CB} = 2\overrightarrow {BA} \Rightarrow {\log _a}5 - {\log _b}5 = 2\left( { - {{\log }_a}5} \right)\\ \Rightarrow 3{\log _a}5 = {\log _b}5 \Rightarrow \frac{3}{{{{\log }_5}a}} = \frac{1}{{{{\log }_5}b}} \Rightarrow {\log _5}a = 3{\log _5}b = {\log _5}{b^3} \Rightarrow a = {b^3}.\end{array}\]
Lời giải
Đáp án D
Gọi \[M = d \cap d'\], ta có \[d':\left\{ \begin{array}{l}x = 2 + t\\y = - 1 - t\\z = 1 + t\end{array} \right.\;\left( {t \in \mathbb{R}} \right) \Rightarrow M\left( {t + 2; - t - 1;t + 1} \right)\].
Đường thẳng d qua \[A\left( {1; - 1;3} \right)\] và nhận \[\overrightarrow {AM} = \left( {t + 1; - t;t - 2} \right)\] là một VTCP.
Mặt phẳng \[\left( P \right):x + 4y - 2z + 1 = 0\] nhận \[\overrightarrow n = \left( {1;4; - 2} \right)\] là một VTPT.
Ta có \[d//\left( P \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AM} .\overrightarrow n = 0\\A \notin \left( P \right)\end{array} \right. \Leftrightarrow \left( {t + 1} \right) - 4t - 2\left( {t - 2} \right) = 0 \Leftrightarrow t = 1 \Rightarrow \overrightarrow {AM} = \left( {2; - 1; - 1} \right)\].
Đường thẳng d qua \[A\left( {1; - 1;3} \right)\] và nhận \[\overrightarrow {AM} = \left( {2; - 1; - 1} \right)\] là một VTCP
\[ \Rightarrow d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải