Cho hàm số \[f\left( x \right) = \left| {{x^4} - 4{x^3} + 4{x^2} + a} \right|\]. Gọi \[M,{\rm{ }}m\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \[\left[ {0;2} \right]\]. Có bao nhiêu số nguyên a thuộc đoạn \[\left[ { - 3;{\mkern 1mu} 3} \right]\] sao cho \[M \le 2m\]?
Quảng cáo
Trả lời:
Đáp án D
Xét hàm số \[g\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + a\], với \[x \in \left[ { - 3;3} \right]\] ta có \[g'\left( x \right) = 4{x^3} - 12{x^2} + 8x;\;\left\{ \begin{array}{l}x \in \left( { - 3;3} \right)\\g'\left( x \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 2\end{array} \right.\].
Xét bảng sau:

+ TH1: \[0 \le a \le 3 \Rightarrow M = a + 1;m = a \Rightarrow M \le 2m \Leftrightarrow a \ge 1 \Rightarrow a \in \left\{ {1;2;3} \right\}\].
+ TH2: \[ - 3 \le a \le - 1 \Rightarrow M = \left| a \right| = - a;\;m = \left| {a + 1} \right| = - a - 1\].
\[ \Rightarrow M \le 2m \Leftrightarrow a \le - 2 \Rightarrow a \in \left\{ { - 3; - 2} \right\}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án C
Ta có \[\begin{array}{l}C\left( {5;{{\log }_b}5} \right),B\left( {5;{{\log }_a}5} \right),A\left( {5;0} \right);\overrightarrow {CB} = 2\overrightarrow {BA} \Rightarrow {\log _a}5 - {\log _b}5 = 2\left( { - {{\log }_a}5} \right)\\ \Rightarrow 3{\log _a}5 = {\log _b}5 \Rightarrow \frac{3}{{{{\log }_5}a}} = \frac{1}{{{{\log }_5}b}} \Rightarrow {\log _5}a = 3{\log _5}b = {\log _5}{b^3} \Rightarrow a = {b^3}.\end{array}\]
Lời giải
Đáp án D
Gọi \[M = d \cap d'\], ta có \[d':\left\{ \begin{array}{l}x = 2 + t\\y = - 1 - t\\z = 1 + t\end{array} \right.\;\left( {t \in \mathbb{R}} \right) \Rightarrow M\left( {t + 2; - t - 1;t + 1} \right)\].
Đường thẳng d qua \[A\left( {1; - 1;3} \right)\] và nhận \[\overrightarrow {AM} = \left( {t + 1; - t;t - 2} \right)\] là một VTCP.
Mặt phẳng \[\left( P \right):x + 4y - 2z + 1 = 0\] nhận \[\overrightarrow n = \left( {1;4; - 2} \right)\] là một VTPT.
Ta có \[d//\left( P \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AM} .\overrightarrow n = 0\\A \notin \left( P \right)\end{array} \right. \Leftrightarrow \left( {t + 1} \right) - 4t - 2\left( {t - 2} \right) = 0 \Leftrightarrow t = 1 \Rightarrow \overrightarrow {AM} = \left( {2; - 1; - 1} \right)\].
Đường thẳng d qua \[A\left( {1; - 1;3} \right)\] và nhận \[\overrightarrow {AM} = \left( {2; - 1; - 1} \right)\] là một VTCP
\[ \Rightarrow d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{{ - 1}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.