Câu hỏi:
07/07/2022 799Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K thỏa mãn: \[\overrightarrow {K{\rm{A}}} + \overrightarrow {KC} = \overrightarrow 0 \]; \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \]; \[\overrightarrow {HA} + \overrightarrow {H{\rm{D}}} + \overrightarrow {HC} = \overrightarrow 0 \]. Tính độ dài các vectơ \[\overrightarrow {GH} \].
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là C
Do \[\overrightarrow {K{\rm{A}}} + \overrightarrow {KC} = \overrightarrow 0 \] nên K là trung điểm của AC.
Do đó K là giao điểm hai đường chéo của hình vuông ABCD.
Do \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \] nên G là trọng tâm của tam giác ABC.
Khi đó trên đoạn BK chọn điểm G sao cho \[\overrightarrow {BG} = \frac{2}{3}\overrightarrow {BK} \].
Do \[\overrightarrow {HA} + \overrightarrow {H{\rm{D}}} + \overrightarrow {HC} = \overrightarrow 0 \] nên H là trọng tâm của tam giác ADC.
Khi đó trên đoạn DK chọn điểm H sao cho \[\overrightarrow {DH} = \frac{2}{3}\overrightarrow {DK} \].
Áp dụng định lí Pythagore vào tam giác ADC vuông tại D có:
AC2 = AD2 + DC2
\[ \Rightarrow \] AC2 = a2 + a2
\[ \Rightarrow \] AC2 = 2a2
\[ \Rightarrow \] AC = \[\sqrt 2 \]a (do AC là độ dài đoạn thẳng nên AC > 0)
Do K là trung điểm của AC nên AK = \[\frac{1}{2}\]AC = \[\frac{{\sqrt 2 a}}{2}\].
Do đó \[\left| {\overrightarrow {K{\rm{A}}} } \right| = \frac{{\sqrt 2 a}}{2}\].
Do ABCD là hình vuông nên AC = BD.
Do đó BD = \[\sqrt 2 \]a.
Do H là trọng tâm của tam giác ADC nên HK = \[\frac{1}{3}\]DK = \[\frac{1}{3}.\frac{1}{2}\]BD = \[\frac{1}{6}\]BD = \[\frac{{\sqrt 2 a}}{6}\].
Do G là trọng tâm của tam giác ABC nên KG = \[\frac{1}{3}\]BK = \[\frac{1}{3}.\frac{1}{2}\]BD = \[\frac{1}{6}\]BD = \[\frac{{\sqrt 2 a}}{6}\].
Do đó HK + KG = \[\frac{{\sqrt 2 a}}{6}\]+ \[\frac{{\sqrt 2 a}}{6}\] hay HG = \[\frac{{\sqrt 2 a}}{3}\].
Do đó \[\left| {\overrightarrow {GH} } \right| = \frac{{\sqrt 2 a}}{3}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có một điểm O bất kì. Đẳng thức nào sau đây đúng?
Câu 4:
Hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động lên một vật, cho \(\left| {\overrightarrow {{F_1}} } \right| = 7N,\left| {\overrightarrow {{F_2}} } \right| = 3N\). Tính độ lớn của hợp lực \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \)(biết góc giữa \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 45°).
Câu 5:
Cho tam giác ABC có I là trung điểm cạnh AB và G là trọng tâm tam giác ABC. Đẳng thức nào sau đây sai:
Câu 6:
Cho hình bình hành ABCD có tâm O, G là trọng tâm tam giác BCD. Đẳng thức nào sau đây sai?
Câu 7:
Hai người cùng kéo một con thuyền với hai lực \[\overrightarrow {{F_1}} = \overrightarrow {OA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {OB} \] có độ lớn lần lượt là 550 N, 800 N. Cho biết góc giữa hai vectơ là 52o.
Độ lớn của vectơ hợp lực \[\overrightarrow F \] là tổng của hai lực \[\overrightarrow {{F_1}} \] và \[\overrightarrow {{F_2}} \] nằm trong khoảng nào dưới đây?
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
75 câu trắc nghiệm Vectơ nâng cao (P1)
Bài tập Xác định tính hợp lí của dữ liệu trong bảng thống kê (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Số gần đúng và sai số có đáp án
Đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án - Đề 1
về câu hỏi!