Câu hỏi:
07/07/2022 1,010
Cho tam giác ABC . Lấy E là trung điểm của AB và F thuộc cạnh AC sao cho AF = \[\frac{1}{3}\]AC. Hãy xác định điểm M để \(\overrightarrow {MA} + 3\overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
Cho tam giác ABC . Lấy E là trung điểm của AB và F thuộc cạnh AC sao cho AF = \[\frac{1}{3}\]AC. Hãy xác định điểm M để \(\overrightarrow {MA} + 3\overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \).
Quảng cáo
Trả lời:
Đáp án đúng là C
Để xác định vị trí điểm M, trước hết ta biểu thị \(\overrightarrow {AM} \) (với gốc A đã biết) theo hai vec tơ \(\overrightarrow {AB} ,\overrightarrow {AC} \).
Đẳng thức vec tơ đã cho tương đương với \(\overrightarrow {MA} + 3\left( {\overrightarrow {MA} + \overrightarrow {AB} } \right) + 2\left( {\overrightarrow {MA} + \overrightarrow {AC} } \right) = \overrightarrow 0 \)
\( \Leftrightarrow 6\overrightarrow {MA} + 3\overrightarrow {AB} + 2\overrightarrow {AC} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
Vì E là trung điểm của AB và F thuộc cạnh AC sao cho AF = \[\frac{1}{3}\]AC nên \(\overrightarrow {AE} = \frac{1}{2}\overrightarrow {AB} \) và \(\overrightarrow {AF} = \frac{1}{3}\overrightarrow {AC} \).
Vì vậy \(\overrightarrow {AM} = \overrightarrow {AE} + \overrightarrow {AF} \).
Suy ra M là đỉnh thứ tư của hình bình hành EAFM.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A

Ta có: \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} = - \overrightarrow {{F_3}} \)
Mà \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OD} \) (OBDA là hình bình hành)
\( \Rightarrow \overrightarrow {OD} = - \overrightarrow {{F_3}} \)
\( \Rightarrow \)Hai vecto \(\overrightarrow {OD} \) và \(\overrightarrow {{F_3}} \) là hai vecto đối nhau
\( \Rightarrow \left| {\overrightarrow {OD} } \right| = \left| { - \overrightarrow {{F_3}} } \right|\) và \(\widehat {BOD} = {60^0}\).
Ta lại có: \(\overrightarrow {BD} = \overrightarrow {{F_1}} \)
Xét ΔOBD, có:
\(OB = \frac{{BD}}{{\tan {{60}^0}}} = \frac{{20}}{{\sqrt 3 }}\left( N \right) \Rightarrow \left| {\overrightarrow {{F_2}} } \right| = \frac{{20}}{{\sqrt 3 }}N.\)
\(OD = \frac{{BD}}{{\sin {{60}^0}}} = \frac{{40\sqrt 3 }}{3}\left( N \right) \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \frac{{40\sqrt 3 }}{3}N.\)
Vậy độ lớn vecto \(\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) lần lượt là \(\frac{{20}}{{\sqrt 3 }}N,\frac{{40\sqrt 3 }}{3}N.\)
Lời giải
Đáp án đúng là D
Ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)
⇔ \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)
⇒ a = \(\frac{1}{2}\), b = \(\frac{1}{2}\).
⇒ S = a + 2b = \(\frac{1}{2}\) + 2.\(\frac{1}{2}\) = \(\frac{1}{2}\) + 1 = \(\frac{3}{2}\).
Vậy S = \(\frac{3}{2}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.