Câu hỏi:

07/07/2022 5,804

Chất điểm A chịu tác động của ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)như hình vẽ và ở trạng thái cân bằng (tức là \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \)). Tính độ lớn của các lực \(\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} ,\) biết \(\overrightarrow {{F_1}} \) có độ lớn là 20N.

Chất điểm A chịu tác động của ba lực vecto F1, vecto F2 vecto F3 (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là A

Chất điểm A chịu tác động của ba lực vecto F1, vecto F2 vecto F3 (ảnh 2)

Ta có: \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} = - \overrightarrow {{F_3}} \)

\(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OD} \) (OBDA là hình bình hành)

\( \Rightarrow \overrightarrow {OD} = - \overrightarrow {{F_3}} \)

\( \Rightarrow \)Hai vecto \(\overrightarrow {OD} \)\(\overrightarrow {{F_3}} \) là hai vecto đối nhau

\( \Rightarrow \left| {\overrightarrow {OD} } \right| = \left| { - \overrightarrow {{F_3}} } \right|\)\(\widehat {BOD} = {60^0}\).

Ta lại có: \(\overrightarrow {BD} = \overrightarrow {{F_1}} \)

Xét ΔOBD, có:

\(OB = \frac{{BD}}{{\tan {{60}^0}}} = \frac{{20}}{{\sqrt 3 }}\left( N \right) \Rightarrow \left| {\overrightarrow {{F_2}} } \right| = \frac{{20}}{{\sqrt 3 }}N.\)

\(OD = \frac{{BD}}{{\sin {{60}^0}}} = \frac{{40\sqrt 3 }}{3}\left( N \right) \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \frac{{40\sqrt 3 }}{3}N.\)

Vậy độ lớn vecto \(\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) lần lượt là \(\frac{{20}}{{\sqrt 3 }}N,\frac{{40\sqrt 3 }}{3}N.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là D

Cho tam giác ABC có đường trung tuyến AM. Khi đó vecto AM (ảnh 1)

Ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)

\(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)

a = \(\frac{1}{2}\), b = \(\frac{1}{2}\).

S = a + 2b = \(\frac{1}{2}\) + 2.\(\frac{1}{2}\) = \(\frac{1}{2}\) + 1 = \(\frac{3}{2}\).

Vậy S = \(\frac{3}{2}\). 

Lời giải

Đáp án đúng là C

Tích của một vectơ \(\overrightarrow a \ne \overrightarrow 0 \)với số thực k < 0 là một vec tơ kí hiệu \(k\overrightarrow a \) ngược hướng với vectơ \(\overrightarrow a \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP