Câu hỏi:

08/07/2022 1,220

Cho hình chóp S.ABC có SA (ABC), AB=a3, ACB^=45° ASB^=60° . Bán kính mặt cầu ngoại tiếp hình chóp S.ABC bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Media VietJack

SA=ABtan(ASB^)=a3tan(60°)=a 

SB=ABsin(ASB^)=a3sin(60°)=2a 

Gọi I là tâm đường tròn ngoại tiếp tam giác ABC

Áp dụng định lý sin ta có ABsin(ACB^)=a3sin(45°)=a6=2r 

r=a62=IA 

 

 

Từ tâm I dựng đường thẳng d vuông góc với mặt đáy.

Lấy M là trung điểm của SA, tạo một mặt phẳng (P) qua M sao cho SA  (P)

Mặt phẳng (P) cắt đường thẳng d tại một điểm O, đó là tâm mặt cầu cần tìm và độ dài AO chính là bán kính mặt cầu đó

Áp dụng định lý Pytago vào tam giác OAM vuông tại M

AO=MA2+OM2=14SA2+AI2 

=14a2+(a62)2=a72 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho log2 3 = a. Giá trị của biểu thức P = log6 12 tính theo a bằng

Xem đáp án » 07/07/2022 6,500

Câu 2:

Đạo hàm của hàm số y = 2x

Xem đáp án » 07/07/2022 6,482

Câu 3:

Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 4sin3 x + 9cos2 x + 6sin x -10. Giá trị của tích M.m bằng

Xem đáp án » 08/07/2022 6,420

Câu 4:

Trong không gian Oxyz, cho hai điểm A(-1; 0; 2), B(3; 2; -2). Biết tập hợp các điểm M thỏa mãn MA2 + MB2 = 30 là một mặt cầu. Bán kính mặt cầu đó bằng

Xem đáp án » 10/07/2022 6,190

Câu 5:

Cho a là một số thực dương. Giá trị của biểu thức P=(2a)4a  bằng

Xem đáp án » 07/07/2022 6,005

Câu 6:

Họ các nguyên hàm 1(2x1)2dx 

Xem đáp án » 07/07/2022 5,910

Câu 7:

Tập xác định của hàm số y=1log2x1

Xem đáp án » 07/07/2022 5,487

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store