Câu hỏi:

10/07/2022 83,831

Hàm số F (x) là một nguyên hàm của hàm số f(x) trên khoảng K nếu

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Theo lý thuyết thì hàm số F (x) là một nguyên hàm của hàm số f (x) trên khoảng K nếu:

F'(x)=f(x),xK 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có: AB=(1;  1;  2) 

AB(P) nên vectơ pháp tuyến của (P) là n=(1;  1;  2) 

Mặt phẳng (P) có vectơ pháp tuyến là  và đi qua điểm A(0; 1; 1) có phương trình:

x + (y – 1) + 2(z – 1) = 0

x + y – 1 + 2z – 2 = 0

 x + y + 2z – 3 = 0.

Câu 2

Trong không gian Oxyz, cho 3 điểm A(1; 0; 0), B(0; –2; 3), C(1; 1; 1). Gọi (P) là mặt phẳng chứa A, B sao cho khoảng cách từ C tới mặt phẳng (P) bằng 23. Phương trình mặt phẳng (P) là:

Lời giải

Đáp án đúng là: D

Phương trình mặt phẳng (P) có vectơ chỉ phương là AB=(1;2;3) 

Vectơ pháp tuyến của mặt phẳng (P) là n=(A;   B;   C) sao cho:

 n.AB=0 (–1).A + (–2).B + 3.C = 0

A = 3C – 2B n=(3C2B;  B;  C) 

Mặt phẳng (P) đi qua A(1; 0; 0) và có Vectơ pháp tuyến là n=(3C2B;B;C) có dạng:

 (3C – 2B).(x – 1) + By + Cz = 0

(3C – 2B).x + By + Cz + 2B – 3C = 0

Khoảng cách từ C(1; 1; 1) đến (P) là d với:

d=|(3C2B).1+B.1+C.1+2B3C|(3C2B)2+B2+C2 

=|B+C|5B212BC+10C2 

+ Với C = 0 d=15 (loại)

+ Với C ≠ 0 d=|BC+1|5(BC)212(BC)+10 

Đặt t=BC (t > 0)

Ta có: d=|t+1|5t212t+10=23 

Bình phương hai vế, ta được:

3|t + 1|2 = 4(5t2 – 12t + 10)

 3.(t2 + 2t + 1) = 4.(5t2 – 12t + 10)

3t2 + 6t + 3 = 20t2 – 48t + 40

17t2 – 54t + 37 = 0

[t=3717t=1 

+ Với  t=3717 , chọn B = 37, C = 17 A = –D = –23.

Do đó (P): –23x + 37y + 17z + 23 = 0

+ Với t = 1, chọn B = C = 1  A = –D = 1.

Do đó (P): x + y + z – 1 = 0.

Câu 3

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; –2; 7), B (–3; 8; –1). Mặt cầu đường kính AB có phương trình là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay