Câu hỏi:

13/07/2024 1,341

Cho hình lăng trụ tam giác ABC.A’B’C’.

a) Gọi E, F lần lượt là tâm của các mặt bên ABB’A’ và ACC’A’. Chứng minh đường

thẳng EF song song mặt phẳng (BCC’B’).

b) Gọi G là trọng tâm của tam giác ABC H là trung điểm của B’C’. Chứng minh đường thẳng C’G song song với mặt phẳng (A’BH).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lăng trụ tam giác ABC.A’B’C’. a) Gọi E, F lần lượt là tâm của các mặt bên ABB’A’  (ảnh 1)

a) Ta có: E, F lần lượt là tâm của các hình bình hành ABB’A’ và ACC’A’.

Nên E và F lần lượt là trung điểm của các cạnh AB’ và AC’.

Xét ∆AB’C’ có E, F lần lượt là trung điểm của các cạnh AB’ và AC’.

Từ đó ta có EF là đường trung bình của ∆AB’C’.

Suy ra EF // B’C’.

Từ đó đường thẳng EF song song mặt phẳng (BCC’B’) .

b) Lấy F là trung điểm của BC .

Ta có AF // A’H Þ AF // (A’BH)

Và C’F // BH Þ C’F // (A’BH)

Suy ra (C’FA) // (A’BH).

Mà C’G Î (C’FA) Þ C’G // (A’BH).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

+ Các cạnh bên của hình lăng trụ bằng nhau và song song với nhau (Đúng)

+ Các mặt bên của hình lăng trụ là các hình bình hành (Đúng)

+ Các mặt bên của hình lăng trụ là các hình bình hành bằng nhau (Sai vì chỉ đúng trong trường hợp lăng trụ có đáy là tam giác đều)

+ Hai đáy của hình lăng trụ là hai đa giác bằng nhau (Đúng).

Câu 2

Lời giải

Đáp án đúng là: A

Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, AC.

IJ // MN nên IJ // (ABC).

Lại có IK // MP suy ra IK // (ABC).

Suy ra (IJK) song song với (ABC).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP