Câu hỏi:

15/07/2022 3,748

Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Đáp án A đúng theo tính chất phân phối của tích vô hướng.

Đáp án B sai. Sửa lại: MP.MN=MN.MP.

Đáp án C đúng theo tính chất giao hoán của tích vô hướng.

Đáp án D đúng, ta sử dụng bình phương vô hướng và hằng đẳng thức.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho hình chữ nhật ABCD có AB = căn bậc hai 2 , AD = 1. Tính góc giữa hai vectơ AC  (ảnh 1)

Tam giác ACD vuông tại D: cosCAD^=ADAC.

Tam giác ABC vuông tại B: cosCAD^=ADAC.

Ta có AC.BD=AC.ADAB=AC.ADAC.AB.

=AC.AD.cosCAD^AC.AB.cosCAB^

=AC.AD.ADACAC.AB.ABAC

=AD2AB2=12=1.

Vì ABCD là hình chữ nhật nên ta có CD = AB = 2 và AC = BD.

Tam giác ACD vuông tại D: AC2=AD2+CD2 (Định lý Pytago)

AC2=12+22=3

AC=3.

Do đó BD = AC = 3.

Lại có: AC.BD=AC.BD.cosAC,  BD

1=3.3.cosAC,  BD

cosAC,  BD=13.

AC,  BD109°28'.

Vậy ta chọn đáp án C.

Câu 2

Cho AB = 2cm, BC = 3cm, CA = 5cm. Tính CA.CB.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có 2 + 3 = 5 (cm). Ta suy ra AB + BC = AC.

Do đó ba điểm A, B, C thẳng hàng và điểm B nằm giữa hai điểm A và C.

(A, B, C không thể là ba đỉnh của tam giác vì không thỏa mãn bất đẳng thức tam giác).

Suy ra ACB^=0°. Do đó CA,  CB=ACB^=0°.

Khi đó CA.CB=CA.CB.cosCA,  CB=3.5.cos0°=15.

Vậy ta chọn đáp án B.

Câu 3

Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng OA+OB.AB=0 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình chữ nhật ABCD có AB = 8, AD = 5. Tính AB.BD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác đều ABC có cạnh a. Tính tích vô hướng AB.AC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay