Câu hỏi:

18/07/2022 14,352

Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Phương trình trục hoành là:

x2 – 2x −1 = −x2 + 3

Û −x2 + 3 – x2 + 2x + 1 = 0

Û −2x2 + 2x + 4 = 0

Û  x=2x=1

Diện tích hình phẳng giới hạn bởi y = x2 – 2x – 1 và y = −x2 + 3 là:

 S = 122x2+2x+4dx

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Đặt u = 2x + 1 Û du = 2dx Þ dx = 12du

Đổi cận:

x

1

0

u

3

1

 
 
 
Ta có:
13f(u)12du=1213f(u)du=1213f(x)dx=12.2=1

Lời giải

Đáp án đúng là: B

Phương trình hoành độ giao điểm của hai đồ thị là

34x = 12x2 + a Û 2x2 – 3x + 4a = 0 (*)

Ta có: (d) cắt (P) tại 2 điểm phân biệt có hoành độ dương nên phương trình có 2 nghiệm dương phân biệt nên:

Δ>0S>0P>0 Û 9a32a>02a>0

Û 0 < a < 932 .

Gọi F(x) là một nguyên hàm của hàm số f(x) = 12 x234 x + a.

Khi đó:

S1 = 0x112x234x+adx

= 16x338x2+ax0x1  = F(x1).

S2 = x1x212x2+34xadx

= F(x)x1x2  = −F(x2) + F(x1).

Ta có: S1 = S2 Û F(x2) = 0

Û 16x23-38x22 + ax2 = 0

Û 4x22 − 9x2 + 24a = 0

Do x2 là nghiệm của phương trình (*) nên ta có hệ phương trình:

2x223x2+4a=04x229x2+24a=02x223x2+4a=016a3x2=02.2569a216a+4a=0x2=16a35129a212a=0a=0a=27128

Đối chiếu điều kiện của a nên ta có a=27128316;712

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP