Câu hỏi:
18/07/2022 18,292
Cho đường thẳng y = x và parabol y = x2 + a, (a là tham số thực dương). Gọi S1, S2 lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S1 = S2 thì a thuộc khoảng nào dưới đây?

Câu hỏi trong đề: Đề kiểm tra Giữa học kì 2 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Phương trình hoành độ giao điểm của hai đồ thị là
x = x2 + a Û 2x2 – 3x + 4a = 0 (*)
Ta có: (d) cắt (P) tại 2 điểm phân biệt có hoành độ dương nên phương trình có 2 nghiệm dương phân biệt nên:
Û
Û 0 < a < .
Gọi F(x) là một nguyên hàm của hàm số f(x) = x2 − x + a.
Khi đó:
S1 =
= = F(x1).
S2 =
= = −F(x2) + F(x1).
Ta có: S1 = S2 Û F(x2) = 0
Û + ax2 = 0
Û − 9x2 + 24a = 0
Do x2 là nghiệm của phương trình (*) nên ta có hệ phương trình:
Đối chiếu điều kiện của a nên ta có
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt u = 2x + 1 Û du = 2dx Þ dx = du
x |
1 |
0 |
u |
3 |
1 |
Lời giải
Đáp án đúng là: B
Ta có: MA2 + MB2 = (a – 1)2 + (b – 2)2 + 12 +(a – 2)2 + (b + 1)2 + 32
= 2a2 + 2b2 – 6a – 2b + 10 = 2(a2 + b2 – 3a – b + 5)
= 2 ≥
Dấu “ = ” xảy ra khi và chỉ khi : a = , b = .
Vậy a + b = = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.