Câu hỏi:

18/07/2022 2,685

Cho đường thẳng y = 34x và parabol y = 12x2 + a, (a là tham số thực dương). Gọi S1, S2 lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S1 = S2 thì a thuộc khoảng nào dưới đây?
Cho đường thẳng y = 3/4x và parabol y =  1/2x^2 + a, (a là tham số thực dương).  (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Phương trình hoành độ giao điểm của hai đồ thị là

34x = 12x2 + a Û 2x2 – 3x + 4a = 0 (*)

Ta có: (d) cắt (P) tại 2 điểm phân biệt có hoành độ dương nên phương trình có 2 nghiệm dương phân biệt nên:

Δ>0S>0P>0 Û 9a32a>02a>0

Û 0 < a < 932 .

Gọi F(x) là một nguyên hàm của hàm số f(x) = 12 x234 x + a.

Khi đó:

S1 = 0x112x234x+adx

= 16x338x2+ax0x1  = F(x1).

S2 = x1x212x2+34xadx

= F(x)x1x2  = −F(x2) + F(x1).

Ta có: S1 = S2 Û F(x2) = 0

Û 16x23-38x22 + ax2 = 0

Û 4x22 − 9x2 + 24a = 0

Do x2 là nghiệm của phương trình (*) nên ta có hệ phương trình:

2x223x2+4a=04x229x2+24a=02x223x2+4a=016a3x2=02.2569a216a+4a=0x2=16a35129a212a=0a=0a=27128

Đối chiếu điều kiện của a nên ta có a=27128316;712

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho 13f(x)dx  = 2, giá trị của 01f(2x+1)dx  bằng

Xem đáp án » 18/07/2022 22,122

Câu 2:

Biết (x+3).e2xdx=1me2x(2x+n)+C, với m, n Î ℚ. Khi đó tổng S = m2 + n2 có giá trị bằng

Xem đáp án » 18/07/2022 11,722

Câu 3:

Cho 2x+1x2dx  = ax + blnx2 với a, b Î, giá trị của S = a + b là

Xem đáp án » 18/07/2022 7,690

Câu 4:

Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3; −1; 1) trên trục Oz có tọa độ là

Xem đáp án » 18/07/2022 7,371

Câu 5:

Tìm họ nguyên hàm F(x) = x2dx

Xem đáp án » 18/07/2022 7,139

Câu 6:

Nguyên hàm của hàm số f(x) = 2x là:

Xem đáp án » 18/07/2022 5,431

Câu 7:

Cho hàm số f(x) liên tục trên đoạn [0; 1] và 0π2f(sinx)dx  = 5. Tính I=0πxf(sinx)dx

Xem đáp án » 18/07/2022 4,988

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store