Câu hỏi:

13/07/2024 324

Tính phương sai và độ lệch chuẩn của mẫu số liệu đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Phương sai của mẫu số liệu là:

\({s^2} = \frac{1}{7}\).[(250 – 5 461,43)2 + (1 351 – 5 461,43)2 + (2 148 – 5 461,43)2 + (3 478 – 5 461,43)2 + (5 050 – 5 461,43)2 + (7 944 – 5 461,43)2 + (18 009 – 5 461,43)2]

= 31820198,82.

Độ lệch chuẩn của mẫu số liệu là: \(s = \sqrt {{s^2}} = \sqrt {31820198,82} \approx 5640,94\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Mỗi cách chọn ngẫu nhiên 2 thẻ trong 20 chiếc thẻ là một tổ hợp chập 2 của 20 phần tử. Do đó không gian mẫu Ω là số các tổ hợp chập 2 của 20 phần tử.

Vậy n(Ω) = \(C_{20}^2 = 190\).

Gọi biến cố A: “Hai thẻ được chọn có tích của hai số được viết trên đó là số lẻ”.

Tích của hai số là số lẻ khi cả hai số đó đều là số lẻ.

Các số tự nhiên lẻ từ 1 đến 20 là: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19. Có 10 số.

Do đó có 10 chiếc thẻ ghi số lẻ.

Số cách chọn 2 thẻ ghi số lẻ trong 10 thẻ ghi số lẻ là \(C_{10}^2 = 45\).

Khi đó n(A) = 45.

Vậy xác xuất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{45}}{{190}} = \frac{9}{{38}}\).

Lời giải

Hướng dẫn giải

10 cặp vợ chồng thì có tất cả 20 người.

Mỗi cách chọn ngẫu nhiên 2 người lên khiêu vũ là một tổ hợp chập 2 của 20 phần tử. Do đó không gian mẫu Ω là số các tổ hợp chập 2 của 20 phần tử.

Khi đó n(Ω) = \(C_{20}^2 = 190\).

Gọi biến cố A: “Chọn được 2 người là vợ chồng”.

Vì có đúng 10 cặp vợ chọn nên chọn được 2 người là vợ chồng thì có 10 cách chọn. Do đó n(A) = 10.

Vậy xác xuất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{190}} = \frac{1}{{19}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP