Câu hỏi:

31/07/2022 915

Cho tam giác ∆ABC cân tại A, có M là trung điểm của BC. Đường trung trực của AB cắt AM tại O. Khi đó điểm O:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Cho tam giác ∆ABC cân tại A, có M là trung điểm của BC. Đường trung trực (ảnh 1)

Gọi N là trung điểm của AB.

Do đó N thuộc đường trung trực của AB.

Xẻt ∆ABM và ∆ACM ta có:

AM là cạnh chung;

AB = AC (∆ABC cân tại A);

MB = MC (M là trung điểm của BC).

Do đó ∆ABM = ∆ACM (c.c.c).

Suy ra AMB^= AMC^  (hai góc tương ứng)

AMB^ + AMC^  = 180° nên  AMB^= AMC^= 90°.

Vi thế AM vuông góc với BC tại M.

Ta có: AM vuông góc với BC tại M;

M là trung điểm của BC.

Suy ra AM là đường trung trực của BC.

Xét ∆ABC có: AM là đường trung trực của BC (cmt);

ON là đường trung trực của AB.

AM cắt ON tại O (gt).

Vậy O cách đều ba đỉnh của ∆ABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Theo định lí: Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.

Do đó O là điểm cách đều ba đỉnh của ∆ABC.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP